
Table of Contents
Dive Into Python...1

Chapter 1. Installing Python...2
1.1. Which Python is right for you?..2
1.2. Python on Windows...2
1.3. Python on Mac OS X...3
1.4. Python on Mac OS 9..5
1.5. Python on RedHat Linux...5
1.6. Python on Debian GNU/Linux..6
1.7. Python Installation from Source..6
1.8. The Interactive Shell..7
1.9. Summary..8

Chapter 2. Your First Python Program...9
2.1. Diving in..9
2.2. Declaring Functions...9
2.3. Documenting Functions...10
2.4. Everything Is an Object...11
2.5. Indenting Code...13
2.6. Testing Modules...14

Chapter 3. Native Datatypes...15
3.1. Introducing Dictionaries..15
3.2. Introducing Lists..17
3.3. Introducing Tuples...22
3.4. Declaring variables..23
3.5. Formatting Strings...25
3.6. Mapping Lists..26
3.7. Joining Lists and Splitting Strings...28
3.8. Summary..29

Chapter 4. The Power Of Introspection...31
4.1. Diving In..31
4.2. Using Optional and Named Arguments...32
4.3. Usingtype, str, dir, and Other Built−In Functions..33
4.4. Getting Object References With getattr...36
4.5. Filtering Lists...38
4.6. The Peculiar Nature of and andor...39
4.7. Usinglambda Functions..41
4.8. Putting It All Together...43
4.9. Summary..45

Chapter 5. Objects and Object−Orientation...47
5.1. Diving In..47
5.2. Importing Modules Usingfrom module import...49
5.3. Defining Classes..50
5.4. Instantiating Classes...53
5.5. ExploringUserDict: A Wrapper Class..54
5.6. Special Class Methods...56
5.7. Advanced Special Class Methods..59

Dive Into Python i

Table of Contents
Chapter 5. Objects and Object−Orientation

5.8. Introducing Class Attributes..60
5.9. Private Functions...62
5.10. Summary..63

Chapter 6. Exceptions and File Handling..64
6.1. Handling Exceptions..64
6.2. Working with File Objects...66
6.3. Iterating with for Loops...70
6.4. Usingsys.modules...72
6.5. Working with Directories..74
6.6. Putting It All Together...77
6.7. Summary..78

Chapter 7. Regular Expressions...81
7.1. Diving In

Table of Contents
Chapter 10. Scripts and Streams

10.6. Handling command−line arguments..143
10.7. Putting it all together..146
10.8. Summary..148

Chapter 11. HTTP Web Services..149
11.1. Diving in..149
11.2. How not to fetch data over HTTP..151
11.3. Features of HTTP...152
11.4. Debugging HTTP web services...153
11.5. Setting theUser−Agent..155
11.6. HandlingLast−Modified andETag...156
11.7. Handling redirects..159
11.8. Handling compressed data...163
11.9. Putting it all together..165
11.10. Summary..167

Chapter 12. SOAP Web Services..168
12.1. Diving In..168
12.2. Installing the SOAP Libraries..169
12.3. First Steps with SOAP...171
12.4. Debugging SOAP Web Services...172
12.5. Introducing WSDL...173
12.6. Introspecting SOAP Web Services with WSDL..174
12.7. Searching Google...176
12.8. Troubleshooting SOAP Web Services...179
12.9. Summary..182

Chapter 13. Unit Testing...183
13.1. Introduction to Roman numerals...183
13.2. Diving in..184
13.3. Introducingromantest.py...184
13.4. Testing for success...187
13.5. Testing for failure..189
13.6. Testing for sanity...190

Chapter 14. Test−First Programming..193
14.1. roman.py, stage 1...193
14.2. roman.py, stage 2...196
14.3. roman.py, stage 3...199
14.4. roman.py, stage 4...202
14.5. roman.py, stage 5...205

Chapter 15. Refactoring..208
15.1. Handling bugs..208
15.2. Handling changing requirements...210
15.3. Refactoring...216
15.4. Postscript..219
15.5. Summary..221

Dive Into Python iii

Table of Contents
Chapter 16. Functional Programming...223

16.1. Diving in..223
16.2. Finding the path...224
16.3. Filtering lists revisited..226
16.4. Mapping lists revisited...228
16.5. Data−centric programming..229
16.6. Dynamically importing modules..230
16.7. Putting it all together..231
16.8. Summary..234

Chapter 17. Dynamic functions..235
17.1. Diving in..235
17.2. plural.py, stage 1..235
17.3. plural.py, stage 2..237
17.4. plural.py, stage 3..239
17.5. plural.py, stage 4..240
17.6. plural.py, stage 5..242
17.7. plural.py, stage 6..243
17.8. Summary..246

Chapter 18. Performance Tuning...247
18.1. Diving in..247
18.2. Using thetimeit Module..249
18.3. Optimizing Regular Expressions...250
18.4. Optimizing Dictionary Lookups..253
18.5. Optimizing List Operations..256
18.6. Optimizing String Manipulation..258
18.7. Summary..260

Appendix A. Further reading...261

Appendix B. A 5−minute review...268

Appendix C. Tips and tricks...282

Appendix D. List of examples...289

Appendix E. Revision history..302

Appendix F. About the book...314

Appendix G. GNU Free Documentation License..315
G.0. Preamble..315
G.1. Applicability and definitions...315
G.2. Verbatim copying..316
G.3. Copying in quantity...316
G.4. Modifications..317
G.5. Combining documents..318
G.6. Collections of documents..318
G.7. Aggregation with independent works...318

Dive Into Python iv

Table of Contents
Appendix G. GNU Free Documentation License

G.8. Translation..318
G.9. Termination...319
G.10. Future revisions of this license..319
G.11. How to use this License for your documents..319

Appendix H. Python license..320
H.A. History of the software...320
H.B. Terms and conditions for accessing or otherwise using Python..320

Dive Into Python v

Dive Into Python
20 May 2004

Copyright © 2000, 2001, 2002, 2003, 2004 Mark Pilgrim (mailto:mark@diveintopython.org)

This book lives at http://diveintopython.org/. If you're reading it somewhere else, you may not have the latest version.

Permission is granted to copy, distribute, and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front−Cover Texts, and no Back−Cover Texts. A copy of the license is included in
Appendix G, GNU Free Documentation License.

The example programs in this book are free software; you can redistribute and/or modify them under the terms of the
Python license as published by the Python Software Foundation. A copy of the license is included in Appendix H,
Python license.

Dive Into Python 1

mailto:mark@diveintopython.org
http://diveintopython.org/

Chapter 1. Installing Python
Welcome to Python. Let's dive in. In this chapter, you'll install the version of Python that's right for you.

1.1. Which Python is right for you?

The first thing you need to do with Python is install it. Or do you?

If you're using an account on a hosted server, your ISP may have already installed Python. Most popular Linux
distributions come with Python in the default installation. Mac OS X 10.2 and later includes a command−line version
of Python, although you'll probably want to install a version that includes a more Mac−like graphical interface.

Windows does not come with any version of Python, but don't despair! There are several ways to point−and−click
your way to Python on Windows.

As you can see already, Python runs on a great many operating systems. The full list includes Windows, Mac OS,
Mac OS X, and all varieties of free UNIX−compatible systems like Linux. There are also versions that run on Sun
Solaris, AS/400, Amiga, OS/2, BeOS, and a plethora of other platforms you've probably never even heard of.

What's more, Python programs written on one platform can, with a little care, run on any supported platform. For
instance, I regularly develop Python programs on Windows and later deploy them on Linux.

So back to the question that started this section, "Which Python is right for you?" The answer is whichever one runs
on the computer you already have.

1.2. Python on Windows

On Windows, you have a couple choices for installing Python.

ActiveState makes a Windows installer for Python called ActivePython, which includes a complete version of Python,
an IDE with a Python−aware code editor, plus some Windows extensions for Python that allow complete access to
Windows−specific services, APIs, and the Windows Registry.

ActivePython is freely downloadable, although it is not open source. It is the IDE I used to learn Python, and I
recommend you try it unless you have a specific reason not to. One such reason might be that ActiveState is generally
several months behind in updating their ActivePython installer when new version of Python are released. If you
absolutely need the latest version of Python and ActivePython is still a version behind as you read this, you'll want to
use the second option for installing Python on Windows.

The second option is the "official" Python installer, distributed by the people who develop Python itself. It is freely
downloadable and open source, and it is always current with the latest version of Python.

Procedure 1.1. Option 1Lent k1 Tf 0 eo open sourcelatOn, which incoclul itself.
a9n procedurstill a versionel itcMpen 0 u?

http://www.activestate.com/Products/ActivePython/
http://download.microsoft.com/download/WindowsInstaller/Install/2.0/W9XMe/EN-US/InstMsiA.exe

Double−click the installer, ActivePython−2.2.2−224−win32−ix86.msi.3.
Step through the installer program.4.
If space is tight, you can do a custom installation and deselect the documentation, but I don't recommend this
unless you absolutely can't spare the 14MB.

5.

After the installation is complete, close the installer and choose Start−>Programs−>ActiveState ActivePython
2.2−>PythonWin IDE. You'll see something like the following:

6.

PythonWin 2.2.2 (#37, Nov 26 2002, 10:24:37) [MSC 32 bit (Intel)] on win32.
Portions Copyright 1994−2001 Mark Hammond (mhammond@skippinet.com.au) −
see 'Help/About PythonWin' for further copyright information.
>>>

Procedure 1.2. Option 2: Installing Python from Python.org (http://www.python.org/)

Download the latest Python Windows installer by going to http://www.python.org/ftp/python/ and selecting
the highest version number listed, then downloading the .exe installer.

1.

Double−click the installer, Python−2.xxx.yyy.exe. The name will depend on the version of Python
available when you read this.

2.

Step through the installer program.3.
If disk space is tight, you can deselect the HTMLHelp file, the utility scripts (Tools/), and/or the test suite
(Lib/test/).

4.

If you do not have administrative rights on your machine, you can select Advanced Options, then choose
Non−Admin Install. This just affects where Registry entries and Start menu shortcuts are created.

5.

After the installation is complete, close the installer and select Start−>Programs−>Python 2.3−>IDLE (Python
GUI). You'll see something like the following:

6.

Python 2.3.2 (#49, Oct 2 2003, 20:02:00) [MSC v.1200 32 bit (Intel)] on win32
Type "copyright", "credits" or "license()" for more information.

 **
 Personal firewall software may warn about the connection IDLE
 makes to its subprocess using this computer's internal loopback
 interface. This connection is not visible on any external
 interface and no data is sent to or received from the Internet.
 **

IDLE 1.0
>>>

1.3. Python on Mac OS X

On Mac OS X, you have two choices for installing Python: install it, or don't install it. You probably want to install it.

Mac OS X 10.2 and later comes with a command−line version of Python preinstalled. If you are comfortable with the
command line, you can use this version for the first third of the book. However, the preinstalled version does not come
with an XML parser, so when you get to the XML chapter, you'll need to install the full version.

Rather than using the preinstalled version, you'll probably want to install the latest version, which also comes with a
graphical interactive shell.

Procedure 1.3. Running the Preinstalled Version of Python on Mac OS X

To use the preinstalled version of Python, follow these steps:

Open the /Applications folder.1.

Dive Into Python 3

http://www.python.org/
http://www.python.org/ftp/python/

Open the Utilities folder.2.
Double−click Terminal to open a terminal window and get to a command line.3.
Typepython at the command prompt.4.

Try it out:

Welcome to Darwin!
[localhost:~] you% python
Python 2.2 (#1, 07/14/02, 23:25:09)
[GCC Apple cpp−precomp 6.14] on darwin
Type "help", "copyright", "credits", or "license" for more information.
>>> [press Ctrl+D to get back to the command prompt]
[localhost:~] you%

Procedure 1.4. Installing the Latest Version of Python on Mac OS X

http://homepages.cwi.nl/~jack/macpython/download.html

1.4. Python on Mac OS 9

Mac OS 9 does not come with any version of Python, but installation is very simple, and there is only one choice.

Follow these steps to install Python on Mac OS 9:

Download the MacPython23full.bin file from
http://homepages.cwi.nl/~jack/macpython/download.html.

1.

If your browser does not decompress the file automatically, double−click MacPython23full.bin to
decompress the file with Stuffit Expander.

2.

Double−click the installer, MacPython23full.3.
Step through the installer program.4.
AFter installation is complete, close the installer and open the /Applications folder.5.
Open the MacPython−OS9 2.3 folder.6.
Double−click Python IDE to launch Python.7.

The MacPython IDE should display a splash screen, and then take you to the interactive shell. If the interactive shell
does not appear, select Window−>Python Interactive (Cmd−0). You'll see a screen like this:

Python 2.3 (#2, Jul 30 2003, 11:45:28)
[GCC 3.1 20020420 (prerelease)]
Type "copyright", "credits" or "license" for more information.
MacPython IDE 1.0.1
>>>

1.5. Python on RedHat Linux

Installing under UNIX−compatible operating systems such as Linux is easy if you're willing to install a binary
package. Pre−built binary packages are available for most popular Linux distributions. Or you can always compile
from source.

Download the latest Python RPM by going to http://www.python.org/ftp/python/ and selecting the highest version
number listed, then selecting the rpms/ dir9.2lecta .R:

http://homepages.cwi.nl/~jack/macpython/download.html
http://www.python.org/ftp/python/

Python 2.3 (#1, Sep 12 2003, 10:53:56)
[GCC 3.2.2 20030222 (Red Hat Linux 3.2.2−5)] on linux2
Type "help", "copyright", "credits", or "license" for more information.
>>> [press Ctrl+D to exit]
[root@localhost root]# which python2.3
/usr/bin/python2.3

Whoops! Just typingpython gives you the older version of Python −− the one that was installed by
default. That's not the one you want.

At the time of this writing, the newest version is calledpython2.3. You'll probably want to change the
path on the first line of the sample scripts to point to the newer version.

This is the complete path of the newer version of Python that you just installed. Use this on the #! line
(the first line of each script) to ensure that scripts are running under the latest version of Python, and be
sure to typepython2.3 to get into the interactive shell.

1.6. Python on Debian GNU/Linux

If you are lucky enough to be running Debian GNU/Linux, you install Python through the apt command.

Example 1.3. Installing on Debian GNU/Linux

localhost:~$ su −
Password: [enter your root password]
localhost:~# apt−get install python
Reading Package Lists... Done
Building Dependency Tree... Done
The following extra packages will be installed:
 python2.3
Suggested packages:
 python−tk python2.3−doc
The following NEW packages will be installed:
 python python2.3
0 upgraded, 2 newly installed, 0 to remove and 3 not upgraded.
Need to get 0B/2880kB of archives.
After unpacking 9351kB of additional disk space will be used.
Do you want to continue? [Y/n] Y
Selecting previously deselected package python2.3.
(Reading database ... 22848 files and directories currently installed.)
Unpacking python2.3 (from .../python2.3_2.3.1−1_i386.deb) ...
Selecting previously deselected package python.
Unpacking python (from .../python_2.3.1−1_all.deb) ...
Setting up python (2.3.1−1) ...
Setting up python2.3 (2.3.1−1) ...
Compiling python modules in /usr/lib/python2.3 ...
Compiling optimized python modules in /usr/lib/python2.3 ...
localhost:~# exit
logout
localhost:~$ python
Python 2.3.1 (#2, Sep 24 2003, 11:39:14)
[GCC 3.3.2 20030908 (Debian prerelease)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> [press Ctrl+D to exit]

1.7. Python Installation from Source

If you prefer to build from source, you can download the Python source code from http://www.python.org/ftp/python/.
Select the highest version number listed, download the .tgz file), and then do the usualconfigure, make, make

Dive Into Python 6

http://www.python.org/ftp/python/

install dance.

Example 1.4. Installing from source

localhost:~$ su −
Password: [enter your root password]
localhost:~# wget http://www.python.org/ftp/python/2.3/Python−2.3.tgz
Resolving www.python.org... done.
Connecting to www.python.org[194.109.137.226]:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 8,436,880 [application/x−tar]
...
localhost:~# tar xfz Python−2.3.tgz
localhost:~# cd Python−2.3
localhost:~/Python−2.3# ./configure
checking MACHDEP... linux2
checking EXTRAPLATDIR...
checking for −−without−gcc... no
...
localhost:~/Python−2.3# make
gcc −pthread −c −fno−strict−aliasing −DNDEBUG −g −O3 −Wall −Wstrict−prototypes
−I. −I./Include −DPy_BUILD_CORE −o Modules/python.o Modules/python.c
gcc −pthread −c −fno−strict−aliasing −DNDEBUG −g −O3 −Wall −Wstrict−prototypes
−I. −I./Include −DPy_BUILD_CORE −o Parser/acceler.o Parser/acceler.c
gcc −pthread −c −fno−strict−aliasing −DNDEBUG −g −O3 −Wall −Wstrict−prototypes
−I. −I./Include −DPy_BUILD_CORE −o Parser/grammar1.o Parser/grammar1.c
...
localhost:~/Python−2.3# make install
/usr/bin/install −c python /usr/local/bin/python2.3
...
localhost:~/Python−2.3# exit
logout
localhost:~$ which python
/usr/local/bin/python
localhost:~$ python
Python 2.3.1 (#2, Sep 24 2003, 11:39:14)
[GCC 3.3.2 20030908 (Debian prerelease)] on linux2

http://diveintopython.org/download/diveintopython-examples-5.4.zip

 Returns string."""

Triple quotes signify a multi−line string. Everything between the start and end quotes is part of a single string,
including carriage returns and other quote characters. You can use them anywhere, but you'll see them most often used
when defining a doc string.

Triple quotes are also an easy way to define a string with both single and double quotes, like qq/.../ in Perl.
Everything between the triple quotes is the function's doc string, which documents what the function does. A
doc string, if it exists, must be the first thing defined in a function (that is, the first thing after the colon). You
don't technically need to give your function a doc string, but you always should. I know you've heard this in
every programming class you've ever taken, but Python gives you an added incentive: the doc string is available
at runtime as an attribute of the function.

Many Python IDEs use the doc string to provide context−sensitive documentation, so that when you type a
function name, its doc string appears as a tooltip. This can be incredibly helpful, but it's only as good as the doc
strings you write.
Further Reading on Documenting Functions

PEP 257 (http://www.python.org/peps/pep−0257.html) defines doc string conventions.•
Python Style Guide (http://www.python.org/doc/essays/styleguide.html) discusses how to write a good doc
string.

•

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses conventions for spacing in doc
strings (http://www.python.org/doc/current/tut/node6.html#SECTION006750000000000000000).

•

2.4. Everything Is an Object

In case you missed it, I just said that Python functions have attributes, and that those attributes are available at
runtime.

A function, like everything else in Python, is an object.

Open your favorite Python IDE and follow along:

Example 2.3. Accessing the buildConnectionString Function's doc string

>>> import odbchelper
>>> params = {"server":"mpilgrim", "database":"master", "uid":"sa", "pwd":"secret"}
>>> print odbchelper.buildConnectionString(params)
server=mpilgrim;uid=sa;database=master;pwd=secret
>>> print odbchelper.buildConnectionString.__doc__

http://www.python.org/peps/pep-0257.html
http://www.python.org/doc/essays/styleguide.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node6.html#SECTION006750000000000000000

When you want to use functions defined in imported modules, you need to include the module name. So you
can't just say buildConnectionString; it must be odbchelper.buildConnectionString. If
you've used classes in Java, this should feel vaguely familiar.

Instead of calling the function as you would expect to, you asked for one of the function's attributes, __doc__.

import in Python is like require in Perl. Once you import a Python module, you access its functions with
module.function; once you require a Perl module, you access its functions with module::function.

2.4.1. The Import Search Path

Before you go any further, I want to briefly mention the library search path. Python looks in several places when you
try to import a module. Specifically, it looks in all the directories defined in sys.path. This is just a list, and you
can easily view it or modify it with standard list methods. (You'll learn more about lists later in this chapter.)

Example 2.4. Import Search Path

>>> import sys
>>> sys.path
['', '/usr/local/lib/python2.2', '/usr/local/lib/python2.2/plat−linux2',
'/usr/local/lib/python2.2/lib−dynload', '/usr/local/lib/python2.2/site−packages',
'/usr/local/lib/python2.2/site−packages/PIL', '/usr/local/lib/python2.2/site−packages/piddle']
>>> sys
<module 'sys' (built−in)>
>>> sys.path.append('/my/new/path')

Importing the sys module makes all of its functions and attributes available.

sys.path is a list of directory names that constitute the current search path. (Yours will look different,
depending on your operating system, what version of Python you're running, and where it was originally
installed.) Python will look through these directories (in this order) for a .py file matching the module name
you're trying to import.

Actually, I lied; the truth is more complicated than that, because not all modules are stored as .py files. Some,
like the sys module, are "built−in modules"; they are actually baked right into Python itself. Built−in modules
behave just like regular modules, but their Python source code is not available, because they are not written in
Python! (The sys module is written in C.)

You can add a new directory to Python's search path at runtime by appending the directory name to
sys.path, and then Python will look in that directory as well, whenever you try to import a module. The
effect lasts as long as Python is running. (You'll talk more about append and other list methods in Chapter 3.)

2.4.2. What's an Object?

Everything in Python is an object, and almost everything has attributes and methods. All functions have a built−in
attribute __doc__, which returns the doc string defined in the function's source code. The sys module is an
object which has (among other things) an attribute called path. And so forth.

Still, this begs the question. What is an object? Different programming languages define "object" in different ways. In
some, it means that all objects must have attributes and methods; in others, it means that all objects are subclassable.
In Python, the definition is looser; some objects have neither attributes nor methods (more on this in Chapter 3), and
not all objects are subclassable (more on this in Chapter 5). But everything is an object in the sense that it can be
assigned to a variable or passed as an argument to a function (more in this in Chapter 4).

This is so important that I'm going to repeat it in case you missed it the first few times: everything in Python is an
object. Strings are objects. Lists are objects. Functions are objects. Even modules are objects.

Dive Into Python 12

http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/objects.html
http://www.effbot.org/guides/
http://www.effbot.org/guides/python-objects.htm

After some initial protests and several snide analogies to Fortran, you will make peace with this and start seeing its
benefits. One major benefit is that all Python programs look similar, since indentation is a language requirement and
not a matter of style. This makes it easier to read and understand other people's Python code.

Python uses carriage returns to separate statements and a colon and indentation to separate code blocks. C++ and
Java use semicolons to separate statements and curly braces to separate code blocks.
Further Reading on Code Indentation

Python Reference Manual (http://www.python.org/doc/current/ref/) discusses cross−platform indentation
issues and shows various indentation errors (http://www.python.org/doc/current/ref/indentation.html).

•

Python Style Guide (http://www.python.org/doc/essays/styleguide.html) discusses good indentation style.•

2.6. Testing Modules

Python modules are objects and have several useful attributes. You can use this to easily test your modules as you
write them. Here's an example that uses the if__name__ trick.

if __name__ == "__main__":

Some quick observations before you get to the good stuff. First, parentheses are not required around the if
expression. Second, the if statement ends with a colon, and is followed by indented code.

Like C, Python uses == for comparison and = for assignment. Unlike C, Python does not support in−line assignment,
so there's no chance of accidentally assigning the value you thought you were comparing.
So why is this particular if statement a trick? Modules are objects, and all modules have a built−in attribute
__name__. A module's __name__ depends on how you're using the module. If you import the module, then
__name__ is the module's filename, without a directory path or file extension. But you can also run the module
directly as a standalone program, in which case __name__ will be a special default value, __main__.

>>> import odbchelper
>>> odbchelper.__name__
'odbchelper'

Knowing this, you can design a test suite for your module within the module itself by putting it in this if statement.
When you run the module directly, __name__ is __main__, so the test suite executes. When you import the
module, __name__ is something else, so the test suite is ignored. This makes it easier to develop and debug new
modules before integrating them into a larger program.

On MacPython, there is an additional step to make the if__name__ trick work. Pop up the module's options menu
by clicking the black triangle in the upper−right corner of the window, and make sure Run as __main__ is checked.
Further Reading on Importing Modules

Python Reference Manual (http://www.python.org/doc/current/ref/) discusses the low−level details of
importing modules (http://www.python.org/doc/current/ref/import.html).

•

Dive Into Python 14

http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/indentation.html
http://www.python.org/doc/essays/styleguide.html
http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/import.html

Chapter 3. Native Datatypes
You'll get back to your first Python program in just a minute. But first, a short digression is in order, because you need
to know about dictionaries, tuples, and lists (oh my!). If you're a Perl hacker, you can probably skim the bits about
dictionaries and lists, but you should still pay attention to tuples.

3.1. Introducing Dictionaries

One of Python's built−in datatypes is the dictionary, which defines one−to−one relationships between keys and values.

A dictionary in Python is like a hash in Perl. In Perl, variables that store hashes always start with a % character. In
Python, variables can be named anything, and Python keeps track of the datatype internally.

A dictionary in Python is like an instance of the Hashtable class in Java.

A dictionary in Python is like an instance of the Scripting.Dictionary object in Visual Basic.

3.1.1. Defining Dictionaries

Example 3.1. Defining a Dictionary

>>> d = {"server":"mpilgrim", "database":"master"}
>>> d
{'server': 'mpilgrim', 'database': 'master'}
>>> d["server"]
'mpilgrim'
>>> d["database"]
'master'
>>> d["mpilgrim"]
Traceback (innermost last):
 File "<interactive input>", line 1, in ?
KeyError: mpilgrim

First, you create a new dictionary with two elements and assign it to the variable d. Each element is a
key−value pair, and the whole set of elements is enclosed in curly braces.

'server' is a key, and its associated value, referenced by d["server"], is 'mpilgrim'.

'database' is a key, and its associated value, referenced by d["database"], is 'master'.

You can get values by key, but you can't get keys by value. So d["server"] is 'mpilgrim', but
d["mpilgrim"] raises an exception, because 'mpilgrim' is not a key.

3.1.2. Modifying Dictionaries

Example 3.2. Modifying a Dictionary

>>> d
{'server': 'mpilgrim', 'database': 'master'}
>>> d["database"] = "pubs"
>>> d
{'server': 'mpilgrim', 'database': 'pubs'}
>>> d["uid"] = "sa"
>>> d
{'server': 'mpilgrim', 'uid': 'sa', 'database': 'pubs'}

Dive Into Python 15

You can not have duplicate keys in a dictionary. Assigning a value to an existing key will wipe out the
old value.

You can add new key−value pairs at any time. This syntax is identical to modifying existing values. (Yes,
this will annoy you someday when you think you are adding new values but are actually just modifying
the same value over and over because your key isn't changing the way you think it is.)

Note that the new element (key

3.1.3. Deleting Items From Dictionaries

Example 3.5. Deleting Items from a Dictionary

>>> d
{'server': 'mpilgrim', 'uid': 'sa', 'database': 'master',
42: 'douglas', 'retrycount': 3}
>>> del d[42]
>>> d
{'server': 'mpilgrim', 'uid': 'sa', 'database': 'master', 'retrycount': 3}
>>> d.clear()
>>> d
{}

del lets you delete individual items from a dictionary by key.

clear deletes all items from a dictionary. Note that the set of empty curly braces signifies a dictionary without
any items.

Further Reading on Dictionaries

How to Think Like a Computer Scientist (http://www.ibiblio.org/obp/thinkCSpy/) teaches about dictionaries
and shows how to use dictionaries to model sparse matrices
(http://www.ibiblio.org/obp/thinkCSpy/chap10.htm).

•

Python Knowledge Base (http://www.faqts.com/knowledge−base/index.phtml/fid/199/) has a lot of example
code using dictionaries (http://www.faqts.com/knowledge−base/index.phtml/fid/541).

•

Python Cookbook (http://www.activestate.com/ASPN/Python/Cookbook/) discusses how to sort the values of
a dictionary by key (http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52306).

•

Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the dictionary methods
(http://www.python.org/doc/current/lib/typesmapping.html).

•

3.2. Introducing Lists

Lists are Python's workhorse datatype. If your only experience with lists is arrays in Visual Basic or (God forbid) thbrary"icualu n6 Vi"D hTj
0 −13.2 TdFulu n−44.44 Td(3.2. Introdu. I=wi 11odu. felfla2atype.sual B6.4 T
q on cing215ase Asual Td(3(http:siclst)Tjnc or Td(3erl
/F4 Perl, varyablmetcurly44.44 or (Galw (GCoo−13n Vis)Tj
://wwwclear)Tj(@://www.python.or1 Tion1 T; Td://w
/F4 o use datype., varyablmetcan be named f −boutg, f d2atype.skeepetcionk sig)Tj
0experie Td1 Tnhod.276 T−13.9.35])Tj
Asual Td(3(http:sicmuch)Tj44 curnc nc or Td(Javay"ialy itgh27. can be deld fictn4 Tig)Tat Ifrehod.thodsitemwan2 T13.tionar
/F4 o use dlife 13 A bet1 Tfanhoogyf yuld be es)

http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap10.htm
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/541
http://www.activestate.com/ASPN/Python/Cookbook/
http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52306
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/typesmapping.html

Note the symmetry here. In this five−element list, li[:3] returns the first 3 elements, and li[3:] returns
the last two elements. In fact, li[:n] will always return the first n elements, and li[n:] will return the rest,
regardless of the length of the list.

If both slice indices are left out, all elements of the list are included. But this is not the same as the original li
list; it is a new list that happens to have all the same elements. li[:] is shorthand for making a complete copy
of a list.

3.2.2. Adding Elements to Lists

Example 3.10. Adding Elements to a List

>>> li
['a', 'b', 'mpilgrim', 'z', 'example']
>>> li.append("new")
>>> li
['a', 'b', 'mpilgrim', 'z', 'example', 'new']
>>> li.insert(2, "new")
>>> li
['a', 'b', 'new', 'mpilgrim', 'z', 'example', 'new']
>>> li.extend(["two", "elements"])
>>> li
['a', 'b', 'new', 'mpilgrim', 'z', 'example', 'new', 'two', 'elements']

append adds a single element to the end of the list.

insert inserts a single element into a list. The numeric argument is the index of the first element that gets
bumped out of position. Note that list elements do not need to be unique; there are now two separate elements
with the value 'new', li[2] and li[6].

extend concatenates lists. Note that you do not call extend with multiple arguments; you call it with one
argument, a list. In this case, that list has two elements.

Example 3.11. The Difference between extend and append

>>> li = ['a', 'b', 'c']
>>> li.extend(['d', 'e', 'f'])
>>> li
['a', 'b', 'c', 'd', 'e', 'f']
>>> len(li)
6
>>> li[−1]
'f'
>>> li = ['a', 'b', 'c']
>>> li.append(['d', 'e', 'f'])
>>> li
['a', 'b', 'c', ['d', 'e', 'f']]
>>> len(li)
4
>>> li[−1]
['d', 'e', 'f']

Lists have two methods, extend and append, that look like they do the same thing, but are in fact
completely different. extend takes a single argument, which is always a list, and adds each of the
elements of that list to the original list.

Here you started with a list of three elements ('a', 'b', and 'c'), and you extended the list with a list
of another three elements ('d', 'e', and 'f'), so you now have a list of six elements.

Dive Into Python 19

On the other hand, append takes one argument, which can be any data type, and simply adds it to the
end of the list. Here, you're calling the append method with a single argument, which is a list of three
elements.

Now the original list, which started as a list of three elements, contains four elements. Why four? Because
the last element that you just appended is itself a list. Lists can contain any type of data, including other
lists. That may be what you want, or maybe not. Don't use append if you mean extend.

3.2.3. Searching Lists

Example 3.12. Searching a List

>>> li
['a', 'b', 'new', 'mpilgrim', 'z', 'example', 'new', 'two', 'elements']
>>> li.index("example")
5
>>> li.index("new")
2
>>> li.index("c")
Traceback (innermost last):
 File "<interactive input>", line 1, in ?
ValueError: list.index(x): x not in list
>>> "c" in li
False

index finds the first occurrence of a value in the list and returns the index.

index finds the first occurrence of a value in the list. In this case, 'new' occurs twice in the list, in li[2]
and li[6], but index will return only the first index, 2.

If the value is not found in the list, Python raises an exception. This is notably different from most languages,
which will return some invalid index. While this may seem annoying, it is a good thing, because it means your
program will crash at the source of the problem, rather than later on when you try to use the invalid index.

To test whether a value is in the list, use in, which returns True if the value is found or False if it is not.

Before version 2.2.1, Python had no separate boolean datatype. To compensate for this, Python accepted almost
anything in a boolean context (like an if statement), according to the following rules:

0 is false; all other numbers are true.•
An empty string ("") is false, all other strings are true.•
An empty list ([]) is false; all other lists are true.•
An empty tuple (()) is false; all other tuples are true.•
An empty dictionary ({}) is false; all other dictionaries are true.•

These rules still apply in Python 2.2.1 and beyond, but now you can also use an actual boolean, which has a value of
True or False. Note the capitalization; these values, like everything else in Python, are case−sensitive.

3.2.4. Deleting List Elements

Example 3.13. Removing Elements from a List

>>> li
['a', 'b', 'new', 'mpilgrim', 'z', 'example', 'new', 'two', 'elements']
>>> li.remove("z")
>>> li
['a', 'b', 'new', 'mpilgrim', 'example', 'new', 'two', 'elements']
>>> li.remove("new")

Dive Into Python 20

>>> li
['a', 'b', 'mpilgrim', 'example', 'new', 'two', 'elements']
>>> li.remove("c")

http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap08.htm
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007110000000000000000
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/534
http://www.faqts.com/knowledge-base/index.phtml/fid/540

Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the list methods
(http://www.python.org/doc/current/lib/typesseq−mutable.html).

•

3.3. Introducing Tuples

A tuple is an immutable list. A tuple can not be changed in any way once it is created.

Example 3.15. Defining a tuple

>>> t = ("a", "b", "mpilgrim", "z", "example")
>>> t
('a', 'b', 'mpilgrim', 'z', 'example')
>>> t[0]
'a'
>>> t[−1]
'example'
>>> t[1:3]
('b', 'mpilgrim')

A tuple is defined in the same way as a list, except that the whole set of elements is enclosed in parentheses
instead of square brackets.

The elements of a tuple have a defined order, just like a list. Tuples indices are zero−based, just like a list, so
the first element of a non−empty tuple is always t[0].

Negative indices count from the end of the tuple, just as with a list.

Slicing works too, just like a list. Note that when you slice a list, you get a new list; when you slice a tuple, you
get a new tuple.

Example 3.16. Tuples Have No Methods

>>> t
('a', 'b', 'mpilgrim', 'z', 'example')
>>> t.append("new")
Traceback (innermost last):
 File "<interactive input>", line 1, in ?
AttributeError: 'tuple' object has no attribute 'append'
>>> t.remove("z")
Traceback (innermost last):
 File "<interactive input>", line 1, in ?
AttributeError: 'tuple' object has no attribute 'remove'
>>> t.index("example")
Traceback (innermost last):
 File "<interactive input>", line 1, in ?
AttributeError: 'tuple' object has no attribute 'index'
>>> "z" in t
True

You can't add elements to a tuple. Tuples have no append or extend method.

You can't remove elements from a tuple. Tuples have no remove or pop method.

You can't find elements in a tuple. Tuples have no index method.

You can, however, use in to see if an element exists in the tuple.
So what are tuples good for?

Tuples are faster than lists. If you're defining a constant set of values and all you're ever going to do with it is•

Dive Into Python 22

http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/typesseq-mutable.html

iterate through it, use a tuple instead of a list.
It makes your code safer if you "write−protect" data that does not need to be changed. Using a tuple instead of
a list is like having an implied assert statement that shows this data is constant, and that special thought
(and a specific function) is required to override that.

•

Remember that I said that dictionary keys can be integers, strings, and "a few other types"? Tuples are one of
those types. Tuples can be used as keys in a dictionary, but lists can't be used this way.Actually, it's more
complicated than that. Dictionary keys must be immutable. Tuples themselves are immutable, but if you have
a tuple of lists, that counts as mutable and isn't safe to use as a dictionary key. Only tuples of strings, numbers,
or other dictionary−safe tuples can be used as dictionary keys.

•

Tuples are used in string formatting, as you'll see shortly.•

Tuples can be converted into lists, and vice−versa. The built−in tuple function takes a list and returns a tuple with
the same elements, and the list function takes a tuple and returns a list. In effect, tuple freezes a list, and list
thaws a tuple.
Further Reading on Tuples

How to Think Like a Computer Scientist (http://www.ibiblio.org/obp/thinkCSpy/) teaches about tuples and
shows how to concatenate tuples (http://www.ibiblio.org/obp/thinkCSpy/chap10.htm).

•

Python Knowledge Base (http://www.faqts.com/knowledge−base/index.phtml/fid/199/) shows how to sort a
tuple (http://www.faqts.com/knowledge−base/view.phtml/aid/4553/fid/587).

•

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) shows how to define a tuple with one
element (http://www.python.org/doc/current/tut/node7.html#SECTION007300000000000000000).

•

3.4. Declaring variables

Now that you know something about dictionaries, tuples, and lists (oh my!), let's get back to the sample program from
Chapter 2, odbchelper.py.

Python has local and global variables like most other languages, but it has no explicit variable declarations. Variables
spring into existence by being assigned a value, and they are automatically destroyed when they go out of scope.

Example 3.17. Defining the myParams Variable

if __name__ == "__main__":
 myParams = {"server":"mpilgrim", \
 "database":"master", \
 "uid":"sa", \
 "pwd":"secret" \
 }

Notice the indentation. An if statement is a code block and needs to be indented just like a function.

Also notice that the variable assignment is one command split over several lines, with a backslash ("\") serving as a
line−continuation marker.

When a command is split among several lines with the line−continuation marker ("\"), the continued lines can be
indented in any manner; Python's normally stringent indentation rules do not apply. If your Python IDE auto−indents
the continued line, you should probably accept its default unless you have a burning reason not to.

Dive Into Python 23

http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap10.htm
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/view.phtml/aid/4553/fid/587
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007300000000000000000

6

The built−in range function returns a list of integers. In its simplest form, it takes an upper limit and returns a
zero−based list counting up to but not including the upper limit. (If you like, you can pass other parameters to
specify a base other than 0 and a step other than 1. You can print range.__doc__ for details.)

MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, and SUNDAY are the variables you're
defining. (This example came from the calendar module, a fun little module that prints calendars, like the
UNIX program cal. The calendar module defines integer constants for days of the week.)

Now each variable has its value: MONDAY is 0, TUESDAY is 1, and so forth.
You can also use multi−variable assignment to build functions that return multiple values, simply by returning a tuple
of all the values. The caller can treat it as a tuple, or assign the values to individual variables. Many standard Python
libraries do this, including the os module, which you'll discuss in Chapter 6.

Further Reading on Variables

Python Reference Manual (http://www.python.org/doc/current/ref/) shows examples of when you can skip the
line continuation character (http://www.python.org/doc/current/ref/implicit−joining.html) and when you need
to use it (http://www.python.org/doc/current/ref/explicit−joining.html).

•

How to Think Like a Computer Scientist (http://www.ibiblio.org/obp/thinkCSpy/) shows how to use
multi−variable assignment to swap the values of two variables
(http://www.ibiblio.org/obp/thinkCSpy/chap09.htm).

•

3.5. Formatting Strings

Python supports formatting values into strings. Although this can include very complicated expressions, the most
basic usage is to insert values into a string with the %s placeholder.

String formatting in Python uses the same syntax as the sprintf function in C.

Example 3.21. Introducing String Formatting

>>> k = "uid"
>>> v = "sa"
>>> "%s=%s" % (k, v)
'uid=sa'

The whole expression evaluates to a string. The first %s is replaced by the value of k; the second %s is replaced
by the value of v. All other characters in the string (in this case, the equal sign) stay as they are.

Note that (k, v) is a tuple. I told you they were good for something.

You might be thinking that this is a lot of work just to do simple string concatentation, and you would be right, except
that string formatting isn't just concatenation. It's not even just formatting. It's also type coercion.

Example 3.22. String Formatting vs. Concatenating

>>> uid = "sa"
>>> pwd = "secret"
>>> print pwd + " is not a good password for " + uid
secret is not a good password for sa
>>> print "%s is not a good password for %s" % (pwd, uid)

Dive Into Python 25

http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/implicit-joining.html
http://www.python.org/doc/current/ref/explicit-joining.html
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap09.htm

secret is not a good password for sa
>>> userCount = 6
>>> print "Users connected: %d" % (userCount,)
Users connected: 6
>>> print "Users connected: " + userCount
Traceback (innermost last):
 File "<interactive input>", line 1, in ?
TypeError: cannot concatenate 'str' and 'int' objects

+ is the string concatenation operator.

In this trivial case, string formatting accomplishes the same result as concatentation.

(userCount,) is a tuple with one element. Yes, the syntax is a little strange, but there's a good reason for
it: it's unambiguously a tuple. In fact, you can always include a comma after the last element when defining a
list, tuple, or dictionary, but the comma is required when defining a tuple with one element. If the comma
weren't required, Python wouldn't know whether (userCount) was a tuple with one element or just the value
of userCount.

String formatting works with integers by specifying %d instead of %s.

Trying to concatenate a string with a non−string raises an exception. Unlike string formatting, string
concatenation works only when everything is already a string.

As with printf in C, string formatting in Python is like a Swiss Army knife. There are options galore, and modifier
strings to specially format many different types of values.

Example 3.23. Formatting Numbers

>>> print "Today's stock price: %f" % 50.4625
50.462500
>>> print "Today's stock price: %.2f" % 50.4625
50.46
>>> print "Change since yesterday: %+.2f" % 1.5
+1.50

The %f string formatting option treats the value as a decimal, and prints it to six decimal places.

The ".2" modifier of the %f option truncates the value to two decimal places.

You can even combine modifiers. Adding the + modifier displays a plus or minus sign before the value. Note
that the ".2" modifier is still in place, and is padding the value to exactly two decimal places.

Further Reading on String Formatting

Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the string formatting
format characters (http://www.python.org/doc/current/lib/typesseq−strings.html).

•

Effective AWK Programming (http://www−gnats.gnu.org:8080/cgi−bin/info2www?(gawk)Top) discusses all
the format characters (http://www−gnats.gnu.org:8080/cgi−bin/info2www?(gawk)Control+Letters) and
advanced string formatting techniques like specifying width, precision, and zero−padding
(http://www−gnats.gnu.org:8080/cgi−bin/info2www?(gawk)Format+Modifiers).

•

3.6. Mapping Lists

One of the most powerful features of Python is the list comprehenttp://6s81 −26.,chionesirt9l0ctiea−27ython ile stratp://chionesi3.23. Formatting NumbersOne of C9

http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/typesseq-strings.html
http://www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk)Top
http://www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk)Control+Letters
http://www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk)Format+Modifiers

>>> li = [1, 9, 8, 4]
>>> [elem*2 for elem in li]
[2, 18, 16, 8]
>>> li
[1, 9, 8, 4]
>>> li = [elem*2 for elem in li]
>>> li
[2, 18, 16, 8]

To make sense of this, look at it from right to left. li is the list you're mapping. Python loops through li one
element at a time, temporarily assigning the value of each element to the variable elem. Python then applies
the function elem*2 and appends that result to the returned list.

Note that list comprehensions do not change the original list.

It is safe to assign the result of a list comprehension to the variable that you're mapping. Python constructs the
new list in memory, and when the list comprehension is complete, it assigns the result to the variable.

Here are the list comprehensions in the buildConnectionString function that you declared in Chapter 2:

["%s=%s" % (k, v) for k, v in params.items()]

First, notice that you're calling the items function of the params dictionary. This function returns a list of tuples of
all the data in the dictionary.

Example 3.25. The keys, values, and items Functions

>>> params = {"server":"mpilgrim", "database":"master", "uid":"sa", "pwd":"secret"}
>>> params.keys()
['server', 'uid', 'database', 'pwd']
>>> params.values()
['mpilgrim', 'sa', 'master', 'secret']
>>> params.items()
[('server', 'mpilgrim'), ('uid', 'sa'), ('database', 'master'), ('pwd', 'secret')]27.65 Do Q
> par�. The t i. Pdeha thFs.in the dictionary.

Exaare the list compreNoen et'ultee wed l0 −16�(2el 11
/F4 11 Tf (function that you declardoedha retat 5. The)Tj
/F5 11(t i. PdF4 11 T.50 rg 0 −11 625. The)TrehensrouaedTj
0 a when the0 −1in the dictg /he fytemsd(ntems16(atttems)o able havs in tj
−0 nudicti(2 unordhaea7 Td(>>> thFs.in the dictF4 11 T.50 rg 0 −11 625. The)Tre−16.able bsiosd(ntemsotere2 Ttain7 bothiosTj
ehensi lie vociats)T)0
/0 −1in the dict/F0 1retu0 −16�(2el 11F4 11 0 −16 a listuesembhapion j
/F0Tf (valuesin e)Tj
/F1 11 Tf (ke6. Lon lCnge the origin (0 −16 Tf (Fun
/F4 11 Tf (function that F0 9.2 Tf, StepTg /Step0 −16�=%s" % (k, v) for er":"mpilgrim", "database":"master", "uid":"sa", "pwd":"secret"})Tj
0 −11.063 Td(>>>)Tj
(params.j
/Fer":"mpilgrim", 0 −26.0330 −165 Do Q18, 16, 8])Tj
0.00 0., ('uid', 'sa'), ('database', 'master'), ('pwd', 'secret')])Tj
0.00 0.000 0.00
/F (27.65 Do Q
>)Tj
(parin t.keys())Tj
0.00 [ks()]

F65 Do Q18, 16, 8]'uid', 's
>>> params.values()

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007130000000000000000
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007140000000000000000

You're probably wondering if there's an analogous method to split a string into a list. And of course there is, and it's
called split.

Example 3.28. Splitting a String

>>> li = ['server=mpilgrim', 'uid=sa', 'database=master', 'pwd=secret']
>>> s = ";".join(li)
>>> s
'server=mpilgrim;uid=sa;database=master;pwd=secret'
>>> s.split(";")
['server=mpilgrim', 'uid=sa', 'database=master', 'pwd=secret']
>>> s.split(";", 1)
['server=mpilgrim', 'uid=sa;database=master;pwd=secret']

split reverses join by splitting a string into a multi−element list. Note that the delimiter (";") is
stripped out completely; it does not appear in any of the elements of the returned list.

split takes an optional second argument, which is the number of times to split. (""Oooooh, optional
arguments..." You'll learn how to do this in your own functions in the next chapter.)

anystring.split(delimiter, 1) is a useful technique when you want to search a string for a substring and
then work with everything before the substring (which ends up in the first element of the returned list) and
everything after it (which ends up in the second element).
Further Reading on String Methods

Python Knowledge Base (http://www.faqts.com/knowledge−base/index.phtml/fid/199/) answers common
questions about strings (http://www.faqts.com/knowledge−base/index.phtml/fid/480) and has a lot of example
code using strings (http://www.faqts.com/knowledge−base/index.phtml/fid/539).

•

Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the string methods
(http://www.python.org/doc/current/lib/string−methods.html).

•

Python Library Reference (http://www.python.org/doc/current/lib/) documents the string module
(http://www.python.org/doc/current/lib/module−string.html).

•

The Whole Python FAQ (http://www.python.org/doc/FAQ.html) explains why join is a string method
(http://www.python.org/cgi−bin/faqw.py?query=4.96&querytype=simple&casefold=yes&req=search) instead
of a list method.

•

3.7.1. Historical Note on String Methods

When I first learned Python, I expected join to be a method of a list, which would take the delimiter as an argument.
Many people feel the same way, and there's a story behind the join method. Prior to Python 1.6, strings didn't have
all these useful methods. There was a separate string module that contained all the string functions; each function
took a string as its first argument. The functions were deemed important enough to put onto the strings themselves,
which made sense for functions like lower, upper, and split. But many hard−core Python programmers objected
to the new join method, arguing that it should be a method of the list instead, or that it shouldn't move at all but
simply stay a part of the old string module (which still has a lot of useful stuff in it). I use the new join method
exclusively, but you will see code written either way, and if it really bothers you, you can use the old string.join
function instead.

3.8. Summary

The odbchelper.py program and its output should now make perfect sense.

def buildConnectionString(params):
 """Build a connection string from a dictionary of parameters.

Dive Into Python 29

http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/480
http://www.faqts.com/knowledge-base/index.phtml/fid/539
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/string-methods.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-string.html
http://www.python.org/doc/FAQ.html
http://www.python.org/cgi-bin/faqw.py?query=4.96&querytype=simple&casefold=yes&req=search

 Returns string."""
 return ";".join(["%s=%s" % (k, v) for k, v in params.items()])

if __name__ == "__main__":
 myParams = {"server":"mpilgrim", \
 "database":"master", \
 "uid":"sa", \
 "pwd":"secret" \
 }
 print buildConnectionString(myParams)

Here is the output of odbchelper.py:

server=mpilgrim;uid=sa;database=master;pwd=secret

Before diving into the next chapter, make sure you're comfortable doing all of these things:

Using the Python IDE to test expressions interactively•
Writing Python programs and running them from within your IDE, or from the command line•
Importing modules and calling their functions•
Declaring functions and using doc strings, local variables, and proper indentation•
Defining dictionaries, tuples, and lists•
Accessing attributes and methods of any object, including strings, lists, dictionaries, functions, and modules•
Concatenating values through string formatting•
Mapping lists into other lists using list comprehensions•
Splitting strings into lists and joining lists into strings•

Dive Into Python 30

http://diveintopython.org/download/diveintopython-examples-5.4.zip

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node6.html#SECTION006710000000000000000

4.3.2. The str Function

The str coerces data into a string. Every datatype can be coerced into a string.

Example 4.6. Introducing str

>>> str(1)
'1'
>>> horsemen = ['war', 'pestilence', 'famine']
>>> horsemen
['war', 'pestilence', 'famine']
>>> horsemen.append('Powerbuilder')
>>> str(horsemen)
"['war', 'pestilence', 'famine', 'Powerbuilder']"
>>> str(odbchelper)
"<module 'odbchelper' from 'c:\\docbook\\dip\\py\\odbchelper.py'>"
>>> str(None)
'None'

For simple datatypes like integers, you would expect str to work, because almost every language has a
function to convert an integer to a string.

However, str works on any object of any type. Here it works on a list which you've constructed in bits and
pieces.

str also works on modules. Note that the string representation of the module includes the pathname of the
module on disk, so yours will be different.

A subtle but important behavior of str is that it works on None, the Python null value. It returns the string
'None'. You'll use this to your advantage in the info function, as you'll see shortly.

At the heart of the info function is the powerful dir function. dir returns a list of the attributes and methods of any
object: modules, functions, strings, lists, dictionaries... pretty much anything.

Example 4.7. Introducing dir

>>> li = []
>>> dir(li)
['append', 'count', 'extend', 'index', 'insert',
'pop', 'remove', 'reverse', 'sort']
>>> d = {}
>>> dir(d)
['clear', 'copy', 'get', 'has_key', 'items', 'keys', 'setdefault', 'update', 'values']
>>> import odbchelper
>>> dir(odbchelper)
['__builtins__', '__doc__', '__file__', '__name__', 'buildConnectionString']

li is a list, so dir(li) returns a list of all the methods of a list. Note that the returned list contains the names
of the methods as strings, not the methods themselves.

d is a dictionary, so dir(d) returns a list of the names of dictionary methods. At least one of these, keys,
should look familiar.

This is where it really gets interesting. odbchelper is a module, so dir(odbchelper) returns a list of all
kinds of stuff defined in the module, including built−in attributes, like __name__, __doc__, and whatever
other attributes and methods you define. In this case, odbchelper has only one user−defined method, the
buildConnectionString function described in Chapter 2.

Finally, the callable function takes any object and returns True if the object can be called, or False otherwise.

Dive Into Python 34

Callable objects include functions, class methods, even classes themselves. (More on classes in the next chapter.)

Example 4.8. Introducing callable

>>> import string
>>> string.punctuation
'!"#$%&\'()*+,−./:;<=>?@[\\]^_`{|}~'
>>> string.join
<function join at 00C55A7C>
>>> callable(string.punctuation)
False
>>> callable(string.join)
True
>>> print string.join.__doc__
join(list [,sep]) −> string

 Return a string composed of the words in list, with
 intervening occurrences of sep. The default separator is a
 single space.

 (joinfields and join are synonymous)

The functions in the string module are deprecated (although many people still use the join
function), but the module contains a lot of useful constants like this string.punctuation,
which contains all the standard punctuation characters.

string.join is a function that joins a list of strings.

string.punctuation is not callable; it is a string. (A string does have callable methods, but
the string itself is not callable.)

string.join is callable; it's a function that takes two arguments.

Any callable object may have a doc string. By using the callable function on each of an
object's attributes, you can determine which attributes you care about (methods, functions, classes)
and which you want to ignore (constants and so on) without knowing anything about the object
ahead of time.

4.3.3. Built−In Functions

type, str, dir, and all the rest of Python's built−in functions are grouped into a special module called
__builtin__. (That's two underscores before and after.) If it helps, you can think of Python automatically
executing from __builtin__ import * on startup, which imports all the "built−in" functions into the
namespace so you can use them directly.

The advantage of thinking like this is that you can access all the built−in functions and attributes as a group by getting
information about the __builtin__ module. And guess what, Python has a function called info. Try it yourself
and skim through the list now. We'll dive into some of the more important functions later. (Some of the built−in error
classes, like AttributeError, should already look familiar.)

Example 4.9. Built−in Attributes and Functions

>>> from apihelper import info
>>> import __builtin__
>>> info(__builtin__, 20)
ArithmeticError Base class for arithmetic errors.
AssertionError Assertion failed.
AttributeError Attribute not found.

Dive Into Python 35

http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/built-in-funcs.html
http://www.python.org/doc/current/lib/module-exceptions.html

The output function takes one required argument, data, and one optional argument, format. If format is
not specified, it defaults to text, and you will end up calling the plain text output function.

You concatenate the format argument with "output_" to produce a function name, and then go get that
function from the statsout module. This allows you to easily extend the program later to support other
output formats, without changing this dispatch function. Just add another function to statsout named, for
instance, output_pdf, and pass "pdf" as the format into the output function.

Now you can simply call the output function in the same way as any other function. The output_function
variable is a reference to the appropriate function from the statsout module.

Did you see the bug in the previous example? This is a very loose coupling of strings and functions, and there is no
error checking. What happens if the user passes in a format that doesn't have a corresponding function defined in
statsout? Well, getattr will return None, which will be assigned to output_function instead of a valid
function, and the next line that attempts to call that function will crash and raise an exception. That's bad.

Luckily, getattr takes an optional third argument, a default value.

Example 4.13. getattr Default Values

import statsout

def output(data, format="text"):
 output_function = getattr(statsout, "output_%s" % format, statsout.output_text)
 return output_function(data)

This function call is guaranteed to work, because you added a third argument to the call to getattr.
The third argument is a default value that is returned if the attribute or method specified by the second
argument wasn't found.

As you can see, getattr is quite powerful. It is the heart of introspection, and you'll see even more powerful
examples of it in later chapters.

4.5. Filtering Lists

As you know, Python has powerful capabilities for mapping lists into other lists, via list comprehensions (Section 3.6,
�Mapping Lists�). This can be combined with a filtering mechanism, where some elements in the list are mapped
while others are skipped entirely.

Here is the list filtering syntax:

[mapping−expression for element in source−list if filter−expression]

This is an extension of the list comprehensions that you know and love. The first two thirds are the same; the last part,
starting with the if, is the filter expression. A filter expression can be any expression that evaluates true or false
(which in Python can be almost anything). Any element for which the filter expression evaluates true will be included
in the mapping. All other elements are ignored, so they are never put through the mapping expression and are not
included in the output list.

Example 4.14. Introducing List Filtering

>>> li = ["a", "mpilgrim", "foo", "b", "c", "b", "d", "d"]
>>> [elem for elem in li if len(elem) > 1]
['mpilgrim', 'foo']
>>> [elem for elem in li if elem != "b"]

Dive Into Python 38

['a', 'mpilgrim', 'foo', 'c', 'd', 'd']
>>> [elem for elem in li if li.count(elem) == 1]
['a', 'mpilgrim', 'foo', 'c']

The mapping expression here is simple (it just returns the value of each element), so concentrate on the filter
expression. As Python loops through the list, it runs each element through the filter expression. If the filter
expression is true, the element is mapped and the result of the mapping expression is included in the returned
list. Here, you are filtering out all the one−character strings, so you're left with a list of all the longer strings.

Here, you are filtering out a specific value, b. Note that this filters all occurrences of b, since each time it
comes up, the filter expression will be false.

count is a list method that returns the number of times a value occurs in a list. You might think that this filter
would eliminate duplicates from a list, returning a list containing only one copy of each value in the original
list. But it doesn't, because values that appear twice in the original list (in this case, b and d) are excluded
completely. There are ways of eliminating duplicates from a list, but filtering is not the solution.

Let's get back to this line from apihelper.py:

 methodList = [method for method in dir(object) if callable(getattr(object, method))]

This looks complicated, and it is complicated, but the basic structure is the same. The whole filter expression returns a
list, which is assigned to the methodList variable. The first half of the expression is the list mapping part. The
mapping expression is an identity expression, which it returns the value of each element. dir(object) returns a list
of object's attributes and methods −− that's the list you're mapping. So the only new part is the filter expression
after the if.

The filter expression looks scary, but it's not. You already know about callable, getattr, and in. As you saw in
the previous section, the expression getattr(object, method) returns a function object if object is a
module and method is the name of a function in that module.

So this expression takes an object (named object). Then it gets a list of the names of the object's attributes,
methods, functions, and a few other things. Then it filters that list to weed out all the stuff that you don't care about.
You do the weeding out by taking the name of each attribute/method/function and getting a reference to the real thing,
via the getattr function. Then you check to see if that object is callable, which will be any methods and functions,
both built−in (like the pop method of a list) and user−defined (like the buildConnectionString function of the
odbchelper module). You don't care about other attributes, like the __name__ attribute that's built in to every
module.

Further Reading on Filtering Lists

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses another way to filter lists using the
built−in filter function
(http://www.python.org/doc/current/tut/node7.html#SECTION009sS300

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007130000000000000000

This syntax looks similar to the bool ? a : b expression in C. The entire expression is evaluated
from left to right, so the and is evaluated first. 1 and 'first' evalutes to 'first', then
'first' or 'second' evalutes to 'first'.

0 and 'first' evalutes to False, and then 0 or 'second' evaluates to 'second'.
However, since this Python expression is simply boolean logic, and not a special construct of the language, there is
one extremely important difference between this and−or trick in Python and the bool ? a : b syntax in C. If the
value of a is false, the expression will not work as you would expect it to. (Can you tell I was bitten by this? More
than once?)

Example 4.18. When the and−or Trick Fails

>>> a = ""
>>> b = "second"
>>> 1 and a or b
'second'

Since a is an empty string, which Python considers false in a boolean context, 1 and '' evalutes to '', and
then '' or 'second' evalutes to 'second'. Oops! That's not what you wanted.

The and−or trick, bool and a or b, will not work like the C expression bool ? a : b when a is false in a
boolean context.

The real trick behind the and−or trick, then, is to make sure that the value of a is never false. One common way of
doing this is to turn a into [a] and b into [b], then taking the first element of the returned list, which will be either a
or b.

Example 4.19. Using the and−or Trick Safely

>>> a = ""
>>> b = "second"
>>> (1 and [a] or [b])[0]
''

Since [a] is a non−empty list, it is never false. Even if a is 0 or '' or some other false value, the list [a] is
true because it has one element.

By now, this trick may seem like more trouble than it's worth. You could, after all, accomplish the same thing with an
if statement, so why go through all this fuss? Well, in many cases, you are choosing between two constant values, so
you can use the simpler syntax and not worry, because you know that the a value will always be true. And even if you
need to use the more complicated safe form, there are good reasons to do so. For example, there are some cases in
Python where if statements are not allowed, such as in lambda functions.

Further Reading on the and−or Trick

Python Cookbook (http://www.activestate.com/ASPN/Python/Cookbook/) discusses alternatives to the
and−or trick (http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52310).

•

4.7. Using lambda Functions

Python supports an interesting syntax that lets you define one−line mini−functions on the fly. Borrowed from Lisp,
these so−called lambda functions can be used anywhere a function is required.

Dive Into Python 41

http://www.activestate.com/ASPN/Python/Cookbook/
http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52310

Example 4.20. Introducing lambda Functions

>>> def f(x):
... return x*2
...
>>> f(3)
6
>>> g = lambda x: x*2
>>> g(3)
6
>>> (lambda x: x*2)(3)
6

This is a lambda function that accomplishes the same thing as the normal function above it. Note the
abbreviated syntax here: there are no parentheses around the argument list, and the return keyword is
missing (it is implied, since the entire function can only be one expression). Also, the function has no name, but
it can be called through the variable it is assigned to.

You can use a lambda function without even assigning it to a variable. This may not be the most useful thing
in the world, but it just goes to show that a lambda is just an in−line function.

To generalize, a lambda function is a function that takes any number of arguments (including optional arguments)
and returns the value of a single expression. lambda functions can not contain commands, and they can not contain
more than one expression. Don't try to squeeze too much into a

http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/view.phtml/aid/6081/fid/241
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node6.html#SECTION006740000000000000000
http://python.sourceforge.net/peps/pep-0227.html
http://www.python.org/doc/FAQ.html
http://www.python.org/cgi-bin/faqw.py?query=4.15&querytype=simple&casefold=yes&req=search

Stepping back even further, you see that you're using string formatting again to concatenate the return value of
processFunc with the return value of method's ljust method. This is a new string method that you haven't seen
before.

Example 4.24. Introducing ljust

>>> s = 'buildConnectionString'
>>> s.ljust(30)
'buildConnectionString '
>>> s.ljust(20)
'buildConnectionString'

ljust pads the string with spaces to the given length. This is what the info function uses to make two
columns of output and line up all the doc strings in the second column.

If the given length is smaller than the length of the string, ljust will simply return the string unchanged. It
never truncates the string.

You're almost finished. Given the padded method name from the ljust method and the (possibly collapsed) doc
string from the call to processFunc

 print info.__doc__

Here is the output of apihelper.py:

>>> from apihelper import info
>>> li = []
>>> info(li)
append L.append(object) −− append object to end
count L.count(value) −> integer −− return number of occurrences of value
extend L.extend(list) −− extend list by appending list elements
index L.index(value) −> integer −− return index of first occurrence of value
insert L.insert(index, object) −− insert object before index
pop L.pop([index]) −> item −− remove and return item at index (default last)
remove L.remove(value) −− remove first occurrence of value
reverse L.reverse() −− reverse *IN PLACE*
sort L.sort([cmpfunc]) −− sort *IN PLACE*; if given, cmpfunc(x, y) −> −1, 0, 1

Before diving into the next chapter, make sure you're comfortable doing all of these things:

Defining and calling functions with optional and named arguments•
Using str to coerce any arbitrary value into a string representation•
Using getattr to get references to functions and other attributes dynamically•
Extending the list comprehension syntax to do list filtering•
Recognizing the and−or trick and using it safely•
Defining lambda functions•
Assigning functions to variables and calling the function by referencing the variable. I can't emphasize this
enough, because this mode of thought is vital to advancing your understanding of Python. You'll see more
complex applications of this concept throughout this book.

•

Dive Into Python 46

Chapter 5. Objects and Object−Orientation
This chapter, and pretty much every chapter after this, deals with object−oriented Python programming.

5.1. Diving In

Here is a complete, working Python program. Read the doc strings of the module, the classes, and the functions
to get an overview of what this program does and how it works. As usual, don't worry about the stuff you don't
understand; that's what the rest of the chapter is for.

Example 5.1. fileinfo.py

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython−examples−5.4.zip) used in this book.

"""Framework for getting filetype−specific metadata.

Instantiate appropriate class with filename. Returned object acts like a
dictionary, with key−value pairs for each piece of metadata.
 import fileinfo
 info = fileinfo.MP3FileInfo("/music/ap/mahadeva.mp3")
 print "\\n".join(["%s=%s" % (k, v) for k, v in info.items()])

Or use listDirectory function to get info on all files in a directory.
 for info in fileinfo.listDirectory("/music/ap/", [".mp3"]):
 ...

Framework can be extended by adding classes for particular file types, e.g.
HTMLFileInfo, MPGFileInfo, DOCFileInfo. Each class is completely responsible for
parsing its files appropriately; see MP3FileInfo for example.
"""
import os
import sys
from UserDict import UserDict

def stripnulls(data):
 "strip whitespace and nulls"
 return data.replace("\00", "").strip()

class FileInfo(UserDict):
 "store file metadata"
 def __init__(self, filename=None):
 UserDict.__init__(self)
 self["name"] = filename

class MP3FileInfo(FileInfo):
 "store ID3v1.0 MP3 tags"
 tagDataMap = {"title" : (3, 33, stripnulls),
 "artist" : (33, 63, stripnulls),
 "album" : (63, 93, stripnulls),
 "year" : (93, 97, stripnulls),
 "comment" : (97, 126, stripnulls),
 "genre" : (127, 128, ord)}

 def __parse(self, filename):
 "parse ID3v1.0 tags from MP3 file"
 self.clear()
 try:

Dive Into Python 47

http://diveintopython.org/download/diveintopython-examples-5.4.zip

 fsock = open(filename, "rb", 0)
 try:
 fsock.seek(−128, 2)
 tagdata = fsock.read(128)
 finally:
 fsock.close()
 if tagdata[:3] == "TAG":
 for tag, (start, end, parseFunc) in self.tagDataMap.items():
 self[tag] = parseFunc(tagdata[start:end])
 except IOError:
 pass

 def __setitem__(self, key, item):
 if key == "name" and item:
 self.__parse(item)
 FileInfo.__setitem__(self, key, item)

def listDirectory(directory, fileExtList):
 "get list of file info objects for files of particular extensions"
 fileList = [os.path.normcase(f)
 for f in os.listdir(directory)]
 fileList = [os.path.join(directory, f)
 for f in fileList
 if os.path.splitext(f)[1] in fileExtList]
 def getFileInfoClass(filename, module=sys.modules[FileInfo.__module__]):
 "get file info class from filename extension"
 subclass = "%sFileInfo" % os.path.splitext(filename)[1].upper()[1:]
 return hasattr(module, subclass) and getattr(module, subclass) or FileInfo
 return [getFileInfoClass(f)(f) for f in fileList]

if __name__ == "__main__":
 for info in listDirectory("/music/_singles/", [".mp3"]):
 print "\n".join(["%s=%s" % (k, v) for k, v in info.items()])
 print

This program's output depends on the files on your hard drive. To get meaningful output, you'll need to change
the directory path to point to a directory of MP3 files on your own machine.

This is the output I got on my machine. Your output will be different, unless, by some startling coincidence, you share
my exact taste in music.

album=
artist=Ghost in the Machine
title=A Time Long Forgotten (Concept
genre=31
name=/music/_singles/a_time_long_forgotten_con.mp3
year=1999
comment=http://mp3.com/ghostmachine

album=Rave Mix
artist=***DJ MARY−JANE***
title=HELLRAISER****Trance from Hell
genre=31
name=/music/_singles/hellraiser.mp3
year=2000
comment=http://mp3.com/DJMARYJANE

album=Rave Mix
artist=***DJ MARY−JANE***
title=KAIRO****THE BEST GOA
genre=31
name=/music/_singles/kairo.mp3
year=2000

Dive Into Python 48

comment=http://mp3.com/DJMARYJANE

album=Journeys
artist=Masters of Balance
title=Long Way Home
genre=31
name=/music/_singles/long_way_home1.mp3
year=2000
comment=http://mp3.com/MastersofBalan

album=
artist=The Cynic Project
title=Sidewinder
genre=18
name=/music/_singles/sidewinder.mp3
year=2000
comment=http://mp3.com/cynicproject

album=Digitosis@128k
artist=VXpanded
title=Spinning
genre=255
name=/music/_singles/spinning.mp3
year=2000
comment=http://mp3.com/artists/95/vxp

5.2. Importing Modules Using from module import

Python has two ways of importing modules. Both are useful, and you should know when to use each. One way,
import module, you've already seen in Section 2.4, �Everything Is an Object�. The other way accomplishes the
same thing, but it has subtle and important differences.

Here is the basic from module import syntax:

from UserDict import UserDict

This is similar to the import module syntax that you know and love, but with an important difference: the
attributes and methods of the imported module types are imported directly into the local namespace, so they are
available directly, without qualification by module name. You can import individual items or use from module
import * to import everything.

from module import * in Python is like use module in Perl; import module in Python is like
require module in Perl.

from module import * in Python is like import module.* in Java; import module in Python is like
import module in Java.

Example 5.2. import module vs. from module import

>>> import types
>>> types.FunctionType

>>> FunctionType
<type 'function'>

The types module contains no methods; it just has attributes for each Python object type. Note that
the attribute, FunctionType, must be qualified by the module name, types.

FunctionType by itself has not been defined in this namespace; it exists only in the context of
types.

This syntax imports the attribute FunctionType from the types module directly into the local
namespace.

Now FunctionType can be accessed directly, without reference to types.
When should you use from module import?

If you will be accessing attributes and methods often and don't want to type the module name over and over,
use from module import.

•

If you want to selectively import some attributes and methods but not others, use from module import.•
If the module contains attributes or functions with the same name as ones in your module, you must use
import module to avoid name conflicts.

•

Other than that, it's just a matter of style, and you will see Python code written both ways.

Use from module import * sparingly, because it makes it difficult to determine where a particular function or
attribute came from, and that makes debugging and refactoring more difficult.
Further Reading on Module Importing Techniques

eff−bot (http://www.effbot.org/guides/) has more to say on import module vs.from module import
(http://www.effbot.org/guides/import−confusion.htm).

•

http://www.effbot.org/guides/
http://www.effbot.org/guides/import-confusion.htm
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node8.html#SECTION008410000000000000000

You probably guessed this, but everything in a class is indented, just like the code within a function, if
statement, for loop, and so forth. The first thing not indented is not in the class.

The pass statement in Python is like an empty set of braces ({}) in Java or C.
Of course, realistically, most classes will be inherited from other classes, and they will define their own class methods
and attributes. But as you've just seen, there is nothing that a class absolutely must have, other than a name. In
particular, C++ programmers may find it odd that Python classes don't have explicit constructors and destructors.
Python classes do have something similar to a constructor: the __init__ method.

Example 5.4. Defining the FileInfo Class

from UserDict import UserDict

class FileInfo(UserDict):

In Python, the ancestor of a class is simply listed in parentheses immediately after the class name. So the
FileInfo class is inherited from the UserDict class (which was imported from the UserDict
module). UserDict is a class that acts like a dictionary, allowing you to essentially subclass the
dictionary datatype and add your own behavior. (There are similar classes UserList and
UserString which allow you to subclass lists and strings.) There is a bit of black magic behind this,
which you will demystify later in this chapter when you explore the UserDict class in more depth.

In Python, the ancestor of a class is simply listed in parentheses immediately after the class name. There is no special
keyword like extends in Java.
Python supports multiple inheritance. In the parentheses following the class name, you can list as many ancestor
classes as you like, separated by commas.

5.3.1. Initializing and Coding Classes

http://www.freenetpages.co.uk/hp/alan.gauld/
http://www.freenetpages.co.uk/hp/alan.gauld/tutclass.htm
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap12.htm
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node11.html
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/242

http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/specialattrs.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-gc.html

Python supports data attributes (called "instance variables" in Java and Powerbuilder, and "member
variables" in C++). Data attributes are pieces of data held by a specific instance of a class. In this case,
each instance of UserDict will have a data attribute data. To reference this attribute from code
outside the class, you qualify it with the instance name, instance.data, in the same way that you
qualify a function with its module name. To reference a data attribute from within the class, you use
self as the qualifier. By convention, all data attributes are initialized to reasonable values in the
__init__ method. However, this is not required, since data attributes, like local variables, spring into
existence when they are first assigned a value.

The update method is a dictionary duplicator: it copies all the keys and values from one dictionary to
another. This does not clear the target dictionary first; if the target dictionary already has some keys, the
ones from the source dictionary will be overwritten, but others will be left untouched. Think of update
as a merge function, not a copy function.

This is a syntax you may not have seen before (I haven't used it in the examples in this book). It's an if
statement, but instead of having an indented block starting on the next line, there is just a single
statement on the same line, after the colon. This is perfectly legal syntax, which is just a shortcut you
can use when you have only one statement in a block. (It's like specifying a single statement without
braces in C++.) You can use this syntax, or you can have indented code on subsequent lines, but you
can't do both for the same block.

Java and Powerbuilder support function overloading by argument list, i.e. one class can have multiple methods with
the same name but a different number of arguments, or arguments of different types. Other languages (most notably
PL/SQL) even support function overloading by argument name; i.e. one class can have multiple methods with the
same name and the same number of arguments of the same type but different argument names. Python supports
neither of these; it has no form of function overloading whatsoever. Methods are defined solely by their name, and
there can be only one method per class with a given name. So if a descendant class has an __init__ method, it
always overrides the ancestor __init__ method, even if the descendant defines it with a different argument list.
And the same rule applies to any other method.

Guido, the original author of Python, explains method overriding this way: "Derived classes may override methods
of their base classes. Because methods have no special privileges when calling other methods of the same object, a
method of a base class that calls another method defined in the same base class, may in fact end up calling a method
of a derived class that overrides it. (For C++ programmers: all methods in Python are effectively virtual.)" If that
doesn't make sense to you (it confuses the hell out of me), feel free to ignore it. I just thought I'd pass it along.

Always assign an initial value to all of an instance's data attributes in the __init__ method. It will save you hours
of debugging later, tracking down AttributeError exceptions because you're referencing uninitialized (and
therefore non−existent) attributes.

Example 5.10. UserDict Normal Methods

 def clear(self): self.data.clear()
 def copy(self):
 if self.__class__ is UserDict:
 return UserDict(self.data)
 import copy
 return copy.copy(self)
 def keys(self): return self.data.keys()
 def items(self): return self.data.items()
 def values(self): return self.data.values()

clear

clear method deletes all of its keys and their associated values.)

The copy method of a real dictionary returns a new dictionary that is an exact duplicate of the original (all the
same key−value pairs). But UserDict can't simply redirect to self.data.copy, because that method
returns a real dictionary, and what you want is to return a new instance that is the same class as self.

You use the __class__ attribute to see if self is a UserDict; if so, you're golden, because you know how
to copy a UserDict: just create a new UserDict and give it the real dictionary that you've squirreled away
in self.data. Then you immediately return the new UserDict you don't even get to the import copy
on the next line.

If self.__class__ is not UserDict, then self must be some subclass of UserDict (like maybe
FileInfo), in which case life gets trickier. UserDict doesn't know how to make an exact copy of one of its
descendants; there could, for instance, be other data attributes defined in the subclass, so you would need to
iterate through them and make sure to copy all of them. Luckily, Python comes with a module to do exactly
this, and it's called copy. I won't go into the details here (though it's a wicked cool module, if you're ever
inclined to dive into it on your own). Suffice it to say that copy can copy arbitrary Python objects, and that's
how you're using it here.

The rest of the methods are straightforward, redirecting the calls to the built−in methods on self.data.

In versions of Python prior to 2.2, you could not directly subclass built−in datatypes like strings, lists, and
dictionaries. To compensate for this, Python comes with wrapper classes that mimic the behavior of these built−in
datatypes: UserString, UserList, and UserDict. Using a combination of normal and special methods, the
UserDict class does an excellent imitation of a dictionary. In Python 2.2 and later, you can inherit classes directly
from built−in datatypes like dict. An example of this is given in the examples that come with this book, in
fileinfo_fromdict.py.
In Python, you can inherit directly from the dict built−in datatype, as shown in this example. There are three
differences here compared to the UserDict version.

Example 5.11. Inheriting Directly from Built−In Datatype dict

class FileInfo(dict):
 "store file metadata"
 def __init__(self, filename=None):
 self["name"] = filename

The first difference is that you don't need to import the UserDict module, since dict is a built−in datatype
and is always available. The second is that you are inheriting from dict directly, instead of from
UserDict.UserDict.

The third difference is subtle but important. Because of the way UserDict works internally, it requires you to
manually call its __init__ method to properly initialize its internal data structures. dict does not work like
this; it is not a wrapper, and it requires no explicit initialization.

Further Reading on UserDict

Python Library Reference (http://www.python.org/doc/current/lib/) documents the UserDict module
(http://www.python.org/doc/current/lib/module−UserDict.html) and the copy module
(http://www.python.org/doc/current/lib/module−copy.html).

•

5.6. Special Class Methods

In addition to normal class methods, there are a number of special methods that Python classes can define. Instead of
being called directly by your code (like normal methods), special methods are called for you by Python in particular
circumstances or when specific syntax is used.

Dive Into Python 56

http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-UserDict.html
http://www.python.org/doc/current/lib/module-copy.html

As you saw in the previous section, normal methods go a long way towards wrapping a dictionary in a class. But
normal methods alone are not enough, because there are a lot of things you can do with dictionaries besides call
methods on them. For starters, you can get and set items with a syntax that doesn't include explicitly invoking
methods. This is where special class methods come in: they provide a way to map non−method−calling syntax into
method calls.

5.6.1. Getting and Setting Items

Example 5.12. The __getitem__

__setitem__ is a special class method because it gets called for you, but it's still a class method. Just as easily as
the __setitem__ method was defined in UserDict, you can redefine it in the descendant class to override the
ancestor method. This allows you to define classes that act like dictionaries in some ways but define their own
behavior above and beyond the built−in dictionary.

This concept is the basis of the entire framework you're studying in this chapter. Each file type can have a handler
class that knows how to get metadata from a particular type of file. Once some attributes (like the file's name and
location) are known, the handler class knows how to derive other attributes automatically. This is done by overriding
the __setitem__ method, checking for particular keys, and adding additional processing when they are found.

For example, MP3FileInfo is a descendant of FileInfo. When an MP3FileInfo's name is set, it doesn't just
set the name key (like the ancestor FileInfo does); it also looks in the file itself for MP3 tags and populates a
whole set of keys. The next example shows how this works.

Example 5.14. Overriding __setitem__ in MP3FileInfo

 def __setitem__(self, key, item):
 if key == "name" and item:
 self.__parse(item)
 FileInfo.__setitem__(self, key, item)

Notice that this __setitem__ method is defined exactly the same way as the ancestor method. This is
important, since Python will be calling the method for you, and it expects it to be defined with a certain number
of arguments. (Technically speaking, the names of the arguments don't matter; only the number of arguments is
important.)

Here's the cru−13.2 Td(important.))Tj
0 M6 (__setitem__)T in ow to : −13.2 Td(imporis omatics easily as)itemnts. (Techin numbe3FileInfoow to nal pr

and code the length calculation yourself, and then call len(instance) and Python will call your
__len__ special method for you.

__delitem__ is called when you call del instance[key], which you may remember as the
way to delete individual items from a dictionary. When you use del on a class instance, Python calls
the __delitem__ special method for you.

In Java, you determine whether two string variables reference the same physical memory location by using str1
== str2. This is called object identity, and it is written in Python as str1 is str2. To compare string values in
Java, you would use str1.equals(str2); in Python, you would use str1 == str2. Java programmers who
have been taught to believe that the world is a better place because == in Java compares by identity instead of by
value may have a difficult time adjusting to Python's lack of such "gotchas".
At this point, you may be thinking, "All this work just to do something in a class that I can do with a built−in
datatype." And it's true that life would be easier (and the entire UserDict class would be unnecessary) if you could
inherit from built−in datatypes like a dictionary. But even if you could, special methods would still be useful, because
they can be used in any class, not just wrapper classes like UserDict.

Special methods mean that any class can store key/value pairs like a dictionary, just by defining the __setitem__
method. Any class can act like a sequence, just by defining the __getitem__ method. Any class that defines the
__cmp__ method can be compared with ==. And if your class represents something that has a length, don't define a
GetLength method; define the __len__ method and use len(instance).

While other object−oriented languages only let you define the physical model of an object ("this object has a
GetLength method"), Python's special class methods like __len__ allow you to define the logical model of an
object ("this object has a length").
Python has a lot of other special methods. There's a whole set of them that let classes act like numbers, allowing you
to add, subtract, and do other arithmetic operations on class instances. (The canonical example of this is a class that
represents complex numbers, numbers with both real and imaginary components.) The __call__ method lets a class
act like a function, allowing you to call a class instance directly. And there are other special methods that allow
classes to have read−only and write−only data attributes; you'll talk more about those in later chapters.

Further Reading on Special Class Methods

Python Reference Manual (http://www.python.org/doc/current/ref/) documents all the special class methods
(http://www.python.org/doc/current/ref/specialnames.html).

•

5.8. Introducing Class Attributes

You already know about data attributes, which are variables owned by a specific instance of a class. Python also
supports class attributes, which are variables owned by the class itself.

Example 5.17. Introducing Class Attributes

class MP3FileInfo(FileInfo):
 "store ID3v1.0 MP3 tags"
 tagDataMap = {"title" : (3, 33, stripnulls),
 "artist" : (33, 63, stripnulls),
 "album" : (63, 93, stripnulls),
 "year" : (93, 97, stripnulls),
 "comment" : (97, 126, stripnulls),
 "genre" : (127, 128, ord)}

Dive Into Python 60

http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/specialnames.html

>>> import fileinfo
>>> fileinfo.MP3FileInfo
<class fileinfo.MP3FileInfo at 01257FDC>
>>> fileinfo.MP3FileInfo.tagDataMap
{'title': (3, 33, <function stripnulls at 0260C8D4>),
'genre': (127, 128, <built−in function ord>),
'artist': (33, 63, <function stripnulls at 0260C8D4>),
'year': (93, 97, <function stripnulls at 0260C8D4>),
'comment': (97, 126, <function stripnulls at 0260C8D4>),
'album': (63, 93, <function stripnulls at 0260C8D4>)}
>>> m = fileinfo.MP3FileInfo()
>>> m.tagDataMap
{'title': (3, 33, <function stripnulls at 0260C8D4>),
'genre': (127, 128, <built−in function ord>),
'artist': (33, 63, <function stripnulls at 0260C8D4>),
'year': (93, 97, <function stripnulls at 0260C8D4>),
'comment': (97, 126, <function stripnulls at 0260C8D4>),
'album': (63, 93, <function stripnulls at 0260C8D4>)}

MP3FileInfo is the class itself, not any particular instance of the class.

tagDataMap is a class attribute: literally, an attribute of the class. It is available before creating any
instances of the class.

Class attributes are available both through direct reference to the class and through any instance of the
class.

In Java, both static variables (called class attributes in Python) and instance variables (called data attributes in
Python) are defined immediately after the class definition (one with the static keyword, one without). In Python,
only class attributes can be defined here; data attributes are defined in the __init__ method.
Class attributes can be used as class−level constants (which is how you use them in MP3FileInfo), but they are not
really constants. You can also change them.

There are no constants in Python. Everything can be changed if you try hard enough. This fits with one of the core
principles of Python: bad behavior should be discouraged but not banned. If you really want to change the value of
None, you can do it, but don't come running to me when your code is impossible to debug.

Example 5.18. Modifying Class Attributes

>>> class counter:
... count = 0
... def __init__(self):
... self.__class__.count += 1
...
>>> counter
<class __main__.counter at 010EAECC>
>>> counter.count
0
>>> c = counter()
>>> c.count
1
>>> counter.count
1
>>> d = counter()
>>> d.count
2
>>> c.count
2
>>> counter.count

Dive Into Python 61

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node11.html#SECTION0011600000000000000000

for an IOError exception, Python just prints out some debugging information about what happened and then
gives up.

You're trying to open the same non−existent file, but this time you're doing it within a try...except block.

When the open method raises an IOError exception, you're ready for it. The except IOError: line
catches the exception and executes your own block of code, which in this case just prints a more pleasant error
message.

Once an exception has been handled, processing continues normally on the first line after the try...except
block. Note that this line will always print, whether or not an exception occurs. If you really did have a file
called notthere in your root directory, the call to open would succeed, the except clause would be
ignored, and this line would still be executed.

Exceptions may seem unfriendly (after all, if you don't catch the exception, your entire program will crash), but
consider the alternative. Would you rather get back an unusable file object to a non−existent file? You'd need to check
its validity somehow anyway, and if you forgot, somewhere down the line, your program would give you strange

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node10.html#SECTION0010400000000000000000
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-exceptions.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-getpass.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-traceback.html
http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/try.html

Example 6.5. Closing a File

>>> f
<open file '/music/_singles/kairo.mp3', mode 'rb' at 010E3988>
>>> f.closed
False
>>> f.close()
>>> f

Because opening and reading files is risky and may raise an exception, all of this code is wrapped in a
try...except block. (Hey, isn't standardized indentation great? This is where you start to appreciate it.)

The open function may raise an IOError. (Maybe the file doesn't exist.)

The seek method may raise an IOError. (Maybe the file is smaller than 128 bytes.)

The read method may raise an IOError. (Maybe the disk has a bad sector, or it's on a network drive and the
network just went down.)

This is new: a try...finally block. Once the file has been opened successfully by the open function, you
want to make absolutely sure that you close it, even if an exception is raised by the seek or read methods.
That's what a try...finally block is for: code in the finally block will always be executed, even if
something in the try block raises an exception. Think of it as code that gets executed on the way out,
regardless of what happened before.

At last, you handle your IOError exception. This could be the IOError exception raised by the call to
open, seek, or read. Here, you really don't care, because all you're going to do is ignore it silently and
continue. (Remember, pass is a Python statement that does nothing.) That's perfectly legal; "handling" an
exception can mean explicitly doing nothing. It still counts as handled, and processing will continue normally
on the next line of code after the try...except block.

6.2.4. Writing to Files

As you would expect, you can also write to files in much the same way that you read from them. There are two basic
file modes:

"Append" mode will add data to the end of the file.•
"write" mode will overwrite the file.•

Either mode will create the file automatically if it doesn't already exist, so there's never a need for any sort of fiddly "if
the log file doesn't exist yet, create a new empty file just so you can open it for the first time" logic. Just open it and
start writing.

Example 6.7. Writing to Files

>>> logfile = open('test.log', 'w')
>>> logfile.write('test succeeded')
>>> logfile.close()
>>> print file('test.log').read()
test succeeded
>>> logfile = open('test.log', 'a')
>>> logfile.write('line 2')
>>> logfile.close()
>>> print file('test.log').read()
test succeededline 2

You start boldly by creating either the new file test.log or overwrites the existing file, and opening
the file for writing. (The second parameter "w" means open the file for writing.) Yes, that's all as
dangerous as it sounds. I hope you didn't care about the previous contents of that file, because it's gone
now.

You can add data to the newly opened file with the write method of the file object returned by open.

file is a synonym for open. This one−liner opens the file, reads its contents, and prints them.

You happen to know that test.log exists (since you just finished writing to it), so you can open it and
append to it. (The "a" parameter means open the file for appending.) Actually you could do this even if
the file didn't exist, because opening the file for appending will create the file if necessary. But appending

Dive Into Python 69

will never harm the existing contents of the file.

As you can see, both the original line you wrote and the second line you appended are now in
test.log. Also note that carriage returns are not included. Since you didn't write them explicitly to the
file either time, the file doesn't include them. You can write a carriage return with the "\n" character.
Since you didn't do this, everything you wrote to the file ended up smooshed together on the same line.

Further Reading on File Handling

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses reading and writing files,
including how to read a file one line at a time into a list
(http://www.python.org/doc/current/tut/node9.html#SECTION009210000000000000000).

•

eff−bot (http://www.effbot.org/guides/) discusses efficiency and performance of various ways of reading a file
(http://www.effbot.org/guides/readline−performance.htm).

•

Python Knowledge Base (http://www.faqts.com/knowledge−base/index.phtml/fid/199/) answers common
questions about files (http://www.faqts.com/knowledge−base/index.phtml/fid/552).

•

Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the file object methods

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node9.html#SECTION009210000000000000000
http://www.effbot.org/guides/
http://www.effbot.org/guides/readline-performance.htm
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/552
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/bltin-file-objects.html

0
1
2
3
4
>>> li = ['a', 'b', 'c', 'd', 'e']
>>> for i in range(len(li)):
... print li[i]
a
b
c
d
e

As you saw in Example 3.20, �Assigning Consecutive Values�, range produces a list of integers, which you
then loop through. I know it looks a bit odd, but it is occasionally (and I stress occasionally) useful to have a
counter loop.

Don't ever do this. This is Visual Basic−style thinking. Break out of it. Just iterate through the list, as shown in
the previous example.

for loops are not just for simple counters. They can iterate through all kinds of things. Here is an example of using a
for loop to iterate through a dictionary.

Example 6.10. Iterating Through a Dictionary

>>> import os
>>> for k, v in os.environ.items():
... print "%s=%s" % thc',l)
USERPROFILE=C:\Documents and Settings\mpilgrim
OS=Windows_NT
COMPUTERNAME=MPILGRIM
USERNAME=mpilgrim

[...snip...]
>>> print "\n".join(["%s=%s" % thc',l)
... for k, v in os.environ.items()])
USERPROFILE=C:\Documents and Settings\mpilgrim
OS=Windows_NT
COMPUTERNAME=MPILGRIM
USERNAME=mpilgrim

[...snip...]

os.environ is a dictionary of the environment variables defined on your system. In Windows, these are your
user and system variables accessible from MS−DOS. In UNIX, they are the variables exported in your shell's
startup scripts. In Mac OS, there is no concept of environment variables, so this dictionary is empty.

os.environ.items() returns a list of tuples: [(key1, value1), (key2, value2), ...]. The
for loop iterates through this list. The first round, it assigns key1 to k and value1 to v, so k =
USERPROFILE and v = C:\Documents and Settings\mpilgrim. In the second round, k gets the
second key, OS, and v gets the corresponding value, Windows_NT.

With multi−variable assignment and list comprehensions, you can replace the entire for loop with a single
statement. Whether you actually do this in real code is a matter of personal coding style. I like it because it
makes it clear that what I'm doing is mapping a dictionary into a list, then joining the list into a single string.
Other programmers prefer to write this out as a for loop. The output is the same in either case, although this
version is slightly faster, because there is only one print statement instead of many.

Now we can look at the for loop in MP3FileInfo, from the sample fileinfo.py program introduced in

Dive Into Python 71

Chapter 5.

Example 6.11. for Loop in MP3FileInfo

 tagDataMap = {"title" : (3, 33, stripnulls),
 "artist" : (33, 63, stripnulls),
 "album" : (63, 93, stripnulls),
 "year" : (93, 97, stripnulls),
 "comment" : (97, 126, stripnulls),
 "genre" : (127, 128, ord)}
 .
 .
 .
 if tagdata[:3] == "TAG":
 for tag, (start, end, parseFunc) in self.tagDataMap.items():
 self[tag] = parseFunc(tagdata[start:end])

tagDataMap is a class attribute that defines the tags you're looking for in an MP3 file. Tags are stored in
fixed−length fields. Once you read the last 128 bytes of the file, bytes 3 through 32 of those are always the song
title, 33 through 62 are always the artist name, 63 through 92 are the album name, and so forth. Note that
tagDataMap is a dictionary of tuples, and each tuple contains two integers and a function reference.

This looks complicated, but it's not. The structure of the for variables matches the structure of the elements of
the list returned by items. Remember that items returns a list of tuples of the form (key, value). The

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node6.html#SECTION006710000000000000000
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-sys.html

The join function of os.path constructs a pathname out of one or more partial pathnames. In this case, it
simply concatenates strings. (Note that dealing with pathnames on Windows is annoying because the backslash
character must be escaped.)

In this slightly less trivial case, join will add an extra backslash to the pathname before joining it to the
filename. I was overjoyed when I discovered this, since addSlashIfNecessary is one of the stupid little
functions I always need to write when building up my toolbox in a new language. Do not write this stupid little
function in Python; smart people have already taken care of it for you.

expanduser will expand a pathname that uses ~ to represent the current user's home directory. This works on
any platform where users have a home directory, like Windows, UNIX, and Mac OS X; it has no effect on Mac
OS.

Combining these techniques, you can easily construct pathnames for directories and files under the user's home
directory.

Example 6.17. Splitting Pathnames

>>> os.path.split("c:\\music\\ap\\mahadeva.mp3")
('c:\\music\\ap', 'mahadeva.mp3')
>>> (filepath, filename) = os.path.split("c:\\music\\ap\\mahadeva.mp3")
>>> filepath
'c:\\music\\ap'
>>> filename
'mahadeva.mp3'
>>> (shortname, extension) = os.path.splitext(filename)
>>> shortname
'mahadeva'
>>> extension
'.mp3'

The split function splits a full pathname and returns a tuple containing the path and filename. Remember
when I said you could use multi−variable assignment to return multiple values from a function? Well, split
is such a function.

You assign the return value of the split function into a tuple of two variables. Each variable receives the
value of the corresponding element of the returned tuple.

The first variable, filepath, receives the value of the first element of the tuple returned from split, the file
path.

The second variable, filename, receives the value of the second element of the tuple returned from split,
the filename.

os.path also contains a function splitext, which splits a filename and returns a tuple containing the
filename and the file extension. You use the same technique to assign each of them to separate variables.

Example 6.18. Listing Directories

>>> os.listdir("c:\\music_singles\\")
['a_time_long_forgotten_con.mp3', 'hellraiser.mp3',
'kairo.mp3', 'long_way_home1.mp3', 'sidewinder.mp3',
'spinning.mp3']
>>> dirname = "c:\\"
>>> os.listdir(dirname)
['AUTOEXEC.BAT', 'boot.ini', 'CONFIG.SYS', 'cygwin',
'docbook', 'Documents and Settings', 'Incoming', 'Inetpub', 'IO.SYS',
'MSDOS.SYS', 'Music', 'NTDETECT.COM', 'ntldr', 'pagefile.sys',
'Program Files', 'Python20', 'RECYCLER',
'System Volume Information', 'TEMP', 'WINNT']
>>> [f for f in os.listdir(dirname)
... if os.path.isfile(os.path.join(dirname, f))]

['AUTOEXEC.BAT', 'boot.ini', 'CONFIG.SYS', 'IO.SYS', 'MSDOS.SYS',
'NTDETECT.COM', 'ntldr', 'pagefile.sys']
>>> [f for f in os.listdir(dirname)
... if os.path.isdir(os.path.join(dirname, f))]
['cygwin', 'docbook', 'Documents and Settings', 'Incoming',
'Inetpub', 'Music', 'Program Files', 'Python20', 'RECYCLER',
'System Volume Information', 'TEMP', 'WINNT']

The listdir function takes a pathname and returns a list of the contents of the directory.

listdir returns both files and folders, with no indication of which is which.

You can use list filtering and the isfile function of the os.path module to separate the files from
the folders. isfile takes a pathname and returns 1 if the path represents a file, and 0 otherwise. Here
you're using os.path.join to ensure a full pathname, but isfile also works with a partial path,
relative to the current working directory. You can use os.getcwd() to get the current working
directory.

os.path also has a isdir function which returns 1 if the path represents a directory, and 0
otherwise. You can use this to get a list of the subdirectories within a directory.

Example 6.19. Listing Directories in fileinfo.py

def listDirectory(directory, fileExtList):
 "get list of file info objects for files of particular extensions"
 fileList = [os.path.normcase(f)
 for f in os.listdir(directory)]
 fileList = [os.path.join(directory, f)
 for f in fileList
 if os.path.splitext(f)[1] in fileExtList]

os.listdir(directory) returns a list of all the files and folders in directory.

Iterating through the list with f, you use os.path.normcase(f) to normalize the case
according to operating system defaults. normcase is a useful little function that compensates
for case−insensitive operating systems that think that mahadeva.mp3 and mahadeva.MP3
are the same file. For instance, on Windows and Mac OS, normcase will convert the entire
filename to lowercase; on UNIX−compatible systems, it will return the filename unchanged.

Iterating through the normalized list with f again, you use os.path.splitext(f) to split
each filename into name and extension.

For each file, you see if the extension is in the list of file extensions you care about
(fileExtList, which was passed to the listDirectory function).

For each file you care about, you use os.path.join(directory, f) to construct the
full pathname of the file, and return a list of the full pathnames.

Whenever possible, you should use the functions in os and os.path for file, directory, and path manipulations.
These modules are wrappers for platform−specific modules, so functions like os.path.split work on UNIX,
Windows, Mac OS, and any other platform supported by Python.
There is one other way to get the contents of a directory. It's very powerful, and it uses the sort of wildcards that you
may already be familiar with from working on the command line.

Example 6.20. Listing Directories with glob

>>> os.listdir("c:\\music_singles\\")
['a_time_long_forgotten_con.mp3', 'hellraiser.mp3',
'kairo.mp3', 'long_way_home1.mp3', 'sidewinder.mp3',
'spinning.mp3']

Dive Into Python 76

>>> import glob
>>> glob.glob('c:\\music_singles*.mp3')
['c:\\music_singles\\a_time_long_forgotten_con.mp3',
'c:\\music_singles\\hellraiser.mp3',
'c:\\music_singles\\kairo.mp3',
'c:\\music_singles\\long_way_home1.mp3',
'c:\\music_singles\\sidewinder.mp3',
'c:\\music_singles\\spinning.mp3']
>>> glob.glob('c:\\music_singles\\s*.mp3')
['c:\\music_singles\\sidewinder.mp3',
'c:\\music_singles\\spinning.mp3']
>>> glob.glob('c:\\music**.mp3')

As you saw earlier, os.listdir simply takes a directory path and lists all files and directories in that
directory.

The glob module, on the other hand, takes a wildcard and returns the full path of all files and
directories matching the wildcard. Here the wildcard is a directory path plus "*.mp3", which will match
all .mp3 files. Note that each element of the returned list already includes the full path of the file.

http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/240
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-os.html
http://www.python.org/doc/current/lib/module-os.path.html

listDirectory is the main attraction of this entire module. It takes a directory (like
c:\music_singles\ in my case) and a list of interesting file extensions (like ['.mp3']), and it returns
a list of class instances that act like dictionaries that contain metadata about each interesting file in that
directory. And it does it in just a few straightforward lines of code.

As you saw in the previous section, this line of code gets a list of the full pathnames of all the files in
directory that have an interesting file extension (as specified by fileExtList).

Old−school Pascal programmers may be familiar with them, but most people give me a blank stare when I tell
them that Python supports nested functions −− literally, a function within a function. The nested function
getFileInfoClass can be called only from the function in which it is defined, listDirectory. As
with any other function, you don't need an interface declaration or anything fancy; just define the function and
code it.

Now that you've seen the os module, this line should make more sense. It gets the extension of the file
(os.path.splitext(filename)[1]), forces it to uppercase (.upper()), slices off the dot ([1:]),
and constructs a class name out of it with string formatting. So

Catching exceptions with try...except•
Protecting external resources with try...finally•
Reading from files•
Assigning multiple values at once in a for loop•
Using the os module for all your cross−platform file manipulation needs•
Dynamically instantiating classes of unknown type by treating classes as objects and passing them around•

Dive Into Python 80

Chapter 7. Regular Expressions
Regular expressions are a powerful and standardized way of searching, replacing, and parsing text with complex
patterns of characters. If you've used regular expressions in other languages (like Perl), the syntax will be very
familiar, and you get by just reading the summary of the re module
(http://www.python.org/doc/current/lib/module−re.html) to get an overview of the available functions and their
arguments.

7.1. Diving In

Strings have methods for searching (index, find, and count), replacing (replace), and parsing (split), but
they are limited to the simplest of cases. The search methods look for a single, hard−coded substring, and they are
always case−sensitive. To do case−insensitive searches of a string s, you must call s.lower() or s.upper() and
make sure your search strings are the appropriate case to match. The replace and split methods have the same
limitations.

If what you're trying to do can be accomplished with string functions, you should use them. They're fast and simple
and easy to read, and there's a lot to be said for fast, simple, readable code. But if you find yourself using a lot of
different string functions with if statements to handle special cases, or if you're combining them with split and
join

http://www.python.org/doc/current/lib/module-re.html

replace method sees these two occurrences and blindly replaces both of them; meanwhile, I see my
addresses getting destroyed.

To solve the problem of addresses with more than one 'ROAD' substring, you could resort to something like
this: only search and replace 'ROAD' in the last four characters of the address (s[−4:]), and leave the string
alone (s[:−4]). But you can see that this is already getting unwieldy. For example, the pattern is dependent
on the length of the string you're replacing (if you were replacing 'STREET' with 'ST.', you would need to
use s[:−6] and s[−6:].replace(...)). Would you like to come back in six months and debug this? I
know I wouldn't.

It's time to move up to regular expressions. In Python, all functionality related to regular expressions is
contained in the re module.

Take a look at the first parameter: 'ROAD$'. This is a simple regular expression that matches 'ROAD' only
when it occurs at the end of a string. The $ means "end of the string". (There is a corresponding character, the
caret ^, which means "beginning of the string".)

Using the re.sub function, you search the string s for the regular expression 'ROAD$' and replace it with
'RD.'. This matches the ROAD at the end of the string s, but does not match the ROAD that's part of the word
BROAD, because that's in the middle of s.

Continuing with my story of scrubbing addresses, I soon discovered that the previous example, matching 'ROAD' at
the end of the address, was not good enough, because not all addresses included a street designation at all; some just
ended with the street name. Most of the time, I got away with it, but if the street name was 'BROAD', then the regular
expression would match 'ROAD' at the end of the string as part of the word 'BROAD', which is not what I wanted.

Example 7.2. Matching Whole Words

>>> s = '100 BROAD'
>>> re.sub('ROAD$', 'RD.', s)
'100 BRD.'
>>> re.sub('\\bROAD$', 'RD.', s)
'100 BROAD'
>>> re.sub(r'\bROAD$', 'RD.', s)
'100 BROAD'
>>> s = '100 BROAD ROAD APT. 3'
>>> re.sub(r'\bROAD$', 'RD.', s)
'100 BROAD ROAD APT. 3'
>>> re.sub(r'\bROAD\b', 'RD.', s)
'100 BROAD RD. APT 3'

What I really wanted was to match 'ROAD' when it was at the end of the string and it was its own
whole word, not a part of some larger word. To express this in a regular expression, you use \b, which
means "a word boundary must occur right here". In Python, this is complicated by the fact that the '\'
character in a string must itself be escaped. This is sometimes referred to as the backslash plague, and it
is one reason why regular expressions are easier in Perl than in Python. On the down side, Perl mixes
regular expressions with other syntax, so if you have a bug, it may be hard to tell whether it's a bug in
syntax or a bug in your regular expression.

To work around the backslash plague, you can use what is called a raw string, by prefixing the string
with the letter r. This tells Python that nothing in this string should be escaped; '\t' is a tab character,
but r'\t' is really the backslash character \ followed by the letter t. I recommend always using raw
strings when dealing with regular expressions; otherwise, things get too confusing too quickly (and
regular expressions get confusing quickly enough all by themselves).

sigh Unfortunately, I soon found more cases that contradicted my logic. In this case, the street
address contained the word 'ROAD' as a whole word by itself, but it wasn't at the end, because the
address had an apartment number after the street designation. Because 'ROAD' isn't at the very end of

Dive Into Python 82

the string, it doesn't match, so the entire call to re.sub ends up replacing nothing at all, and you get
the original string back, which is not what you want.

To solve this problem, I removed the $ character and added another \b. Now the regular expression
reads "match 'ROAD' when it's a whole word by itself anywhere in the string," whether at the end, the
beginning, or somewhere in the middle.

7.3. Case Study: Roman Numerals

You've most likely seen Roman numerals, even if you didn't recognize them. You may have seen them in copyrights
of old movies and television shows ("Copyright MCMXLVI" instead of "Copyright 1946"), or on the dedication walls
of libraries or universities ("established MDCCCLXXXVIII" instead of "established 1888"). You may also have seen
them in outlines and bibliographical references. It's a system of representing numbers that really does date back to the
ancient Roman empire (hence the name).

In Roman numerals, there are seven characters that are repeated and combined in various ways to represent numbers.

I = 1•
V = 5•
X = 10•
L = 50•
C = 100•
D = 500•
M = 1000•

The following are some general rules for constructing Roman numerals:

Characters are additive. I is 1, II is 2, and III is 3. VI is 6 (literally, "5 and 1"), VII is 7, and VIII is 8.•
The tens characters (I, X, C, and M) can be repeated up to three times. At 4, you need to subtract from the next
highest fives character. You can't represent 4 as IIII; instead, it is represented as IV ("1 less than 5"). The
number 40 is written as XL (10 less than 50), 41 as XLI, 42 as XLII, 43 as XLIII, and then 44 as XLIV
(10 less than 50, then 1 less than 5).

•

Similarly, at 9, you need to subtract from the next highest tens character: 8 is VIII, but 9 is IX (1 less than
10), not VIIII (since the I character can not be repeated four times). The number 90 is XC, 900 is CM.

•

The fives characters can not be repeated. The number 10 is always represented as X, never as VV. The number
100 is always C, never LL.

•

Roman numerals are always written highest to lowest, and read left to right, so the order the of characters
matters very much. DC is 600; CD is a completely different number (400, 100 less than 500). CI is 101;
IC is not even a valid Roman numeral (because you can't subtract 1 directly from 100; you would need to
write it as XCIX, for 10 less than 100, then 1 less than 10).

•

7.3.1. Checking for Thousands

What would it take to validate that an arbitrary string is a valid Roman numeral? Let's take it one digit at a time. Since
Roman numerals are always written highest to lowest, let's start with the highest: the thousands place. For numbers
1000 and higher, the thousands are represented by a series of M characters.

Example 7.3. Checking for Thousands

>>> import re
>>> pattern = '^M?M?M?$'
>>> re.search(pattern, 'M')
<SRE_Match object at 0106FB58>

Dive Into Python 83

>>> re.search(pattern, 'MM')
<SRE_Match object at 0106C290>
>>> re.search(pattern, 'MMM')
<SRE_Match object at 0106AA38>
>>> re.search(pattern, 'MMMM')
>>> re.search(pattern, '')
<SRE_Match object at 0106F4A8>

This pattern has three parts:

^ to match what follows only at the beginning of the string. If this were not specified, the pattern
would match no matter where the M characters were, which is not what you want. You want to
make sure that the M characters, if they're there, are at the beginning of the string.

•

M? to optionally match a single M character. Since this is repeated three times, you're matching
anywhere from zero to three M characters in a row.

•

$ to match what precedes only at the end of the string. When combined with the ^ character at
the beginning, this means that the pattern must match the entire string, with no other characters
before or after the M characters.

•

The essence of the re module is the search function, that takes a regular expression (pattern) and a
string ('M') to try to match against the regular expression. If a match is found, search returns an
object which has various methods to describe the match; if no match is found, search returns None,
the Python null value. All you care about at the moment is whether the pattern matches, which you can
tell by just looking at the return value of search. 'M' matches this regular expression, because the first
optional M matches and the second and third optional M characters are ignored.

'MM' matches because the first and second optional M characters match and the third M is ignored.

'MMM' matches because all three M characters match.

'MMMM' does not match. All three M characters match, but then the regular expression insists on the
string ending (because of the $ character), and the string doesn't end yet (because of the fourth M). So
search returns None.

Interestingly, an empty string also matches this regular expression, since all the M characters are optional.

7.3.2. Checking for Hundreds

The hundreds place is more difficult than the thousands, because there are several mutually exclusive ways it could be
expressed, depending on its value.

100 = C•
200 = CC•
300 = CCC•
400 = CD•
500 = D•
600 = DC•
700 = DCC•
800 = DCCC•
900 = CM•

So there are four possible patterns:

CM•
CD•
Zero to three C

>>> import re
>>> pattern = '^M?M?M?$'
>>> re.search(pattern, 'M')
<_sre.SRE_Match object at 0x008EE090>
>>> pattern = '^M?M?M?$'
>>> re.search(pattern, 'MM')
<_sre.SRE_Match object at 0x008EEB48>
>>> pattern = '^M?M?M?$'
>>> re.search(pattern, 'MMM')
<_sre.SRE_Match object at 0x008EE090>
>>> re.search(pattern, 'MMMM')
>>>

This matches the start of the string, and then the first optional M, but not the second and third M (but that's okay
because they're optional), and then the end of the string.

This matches the start of the string, and then the first and second optional M, but not the third M (but that's okay
because it's optional), and then the end of the string.

This matches the start of the string, and then all three optional M, and then the end of the string.

This matches the start of the string, and then all three optional M, but then does not match the the end of the
string (because there is still one unmatched M), so the pattern does not match and returns None.

Example 7.6. The New Way: From n o m

>>> pattern = '^M{0,3}$'
>>> re.search(pattern, 'M')
<_sre.SRE_Match object at 0x008EEB48>
>>> re.search(pattern, 'MM')
<_sre.SRE_Match object at 0x008EE090>
>>> re.search(pattern, 'MMM')
<_sre.SRE_Match object at 0x008EEDA8>
>>> re.search(pattern, 'MMMM')
>>>

This pattern says: "Match the start of the string, then anywhere from zero to three M characters, then the end of
the string." The 0 and 3 can be any numbers; if you want to match at least one but no more than three M
characters, you could say M{1,3}.

This matches the start of the string, then one M out of a possible three, then the end of the string.

This matches the start of the string, then two M out of a possible three, then the end of the string.

This matches the start of the string, then three M out of a possible three, then the end of the string.

This matches the start of the string, then three M out of a possible three, but then does not match the end of the
string. The regular expression allows for up to only three M characters before the end of the string, but you have
four, so the pattern does not match and returns None.

There is no way to programmatically determine that two regular expressions are equivalent. The best you can do is
write a lot of test cases to make sure they behave the same way on all relevant inputs. You'll talk more about writing
test cases later in this book.

7.4.1. Checking for Tens and Ones

Now let's expand the Roman numeral regular expression to cover the tens and ones place. This example shows the
check for tens.

Example 7.7. Checking for Tens

Dive Into Python 86

<_sre.SRE_Match object at 0x008EEB48>
>>> re.search(pattern, 'M')

The most important thing to remember when using verbose regular expressions is that you need to pass
an extra argument when working with them: re.VERBOSE is a constant defined in the re module that
signals that the pattern should be treated as a verbose regular expression. As you can see, this pattern
has quite a bit of whitespace (all of which is ignored), and several comments (all of which are ignored).

>>> phonePattern.search('800−555−1212−1234')
>>>

Always read regular expressions from left to right. This one matches the beginning of the string, and then
(\d{3}). What's \d{3}? Well, the {3} means "match exactly three numeric digits"; it's a variation on
the {n,m} syntax you saw earlier. \d means "any numeric digit" (0 through 9). Putting it in
parentheses means "match exactly three numeric digits, and then remember them as a group that I can
ask for later". Then match a literal hyphen. Then match another group of exactly three digits. Then
another literal hyphen. Then another group of exactly four digits. Then match the end of the string.

To get access to the groups that the regular expression parser remembered along the way, use the
groups() method on the object that the search function returns. It will return a tuple of however
many groups were defined in the regular expression. In this case, you defined three groups, one with
three digits, one with three digits, and one with four digits.

This regular expression is not the final answer, because it doesn't handle a phone number with an
extension on the end. For that, you'll need to expand the regular expression.

Example 7.11. Finding the Extension

>>> phonePattern = re.compile(r'^(\d{3})−(\d{3})−(\d{4})−(\d+)$')
>>> phonePattern.search('800−555−1212−1234').groups()
('800', '555', '1212', '1234')
>>> phonePattern.search('800 555 1212 1234')
>>>
>>> phonePattern.search('800−555−1212')
>>>

This regular expression is almost identical to the previous one. Just as before, you match the beginning
of the string, then a remembered group of three digits, then a hyphen, then a remembered group of three
digits, then a hyphen, then a remembered group of four digits. What's new is that you then match
another hyphen, and a remembered group of one or more digits, then the end of the string.

The groups() method now returns a tuple of four elements, since the regular expression now defines
four groups to remember.

Unfortunately, this regular expression is not the final answer either, because it assumes that the different
parts of the phone number are separated by hyphens. What if they're separated by spaces, or commas, or
dots? You need a more general solution to match several different types of separators.

Oops! Not only does this regular expression not do everything you want, it's actually a step backwards,
because now you can't parse phone numbers without an extension. That's not what you wanted at all; if
the extension is there, you want to know what it is, but if it's not there, you still want to know what the
different parts of the main number are.

The next example shows the regular expression to handle separators between the different parts of the phone number.

Example 7.12. Handling Different Separators

>>> phonePattern = re.compile(r'^(\d{3})\D+(\d{3})\D+(\d{4})\D+(\d+)$')
>>> phonePattern.search('800 555 1212 1234').groups()
('800', '555', '1212', '1234')
>>> phonePattern.search('800−555−1212−1234').groups()
('800', '555', '1212', '1234')
>>> phonePattern.search('80055512121234')
>>>
>>> phonePattern.search('800−555−1212')
>>>

Dive Into Python 90

Hang on to your hat. You're matching the beginning of the string, then a group of three digits, then \D+.
What the heck is that? Well, \D matches any character

This is the same as in the previous example, except now you're matching \D*, zero or more non−numeric
characters, before the first remembered group (the area code). Notice that you're not remembering these
non−numeric characters (they're not in parentheses). If you find them, you'll just skip over them and then start
remembering the area code whenever you get to it.

You can successfully parse the phone number, even with the leading left parenthesis before the area code. (The
right parenthesis after the area code is already handled; it's treated as a non−numeric separator and matched by
the \D* after the first remembered group.)

Just a sanity check to make sure you haven't broken anything that used to work. Since the leading characters are
entirely optional, this matches the beginning of the string, then zero non−numeric characters, then a
remembered group of three digits (800), then one non−numeric character (the hyphen), then a remembered
group of three digits (555), then one non−numeric character (the hyphen), then a remembered group of four
digits (1212), then zero non−numeric characters, then a remembered group of zero digits, then the end of the
string.

This is where regular expressions make me want to gouge my eyes out with a blunt object. Why doesn't this
phone number match? Because there's a 1 before the area code, but you assumed that all the leading characters
before the area code were non−numeric characters (\D*). Aargh.

Let's back up for a second. So far the regular expressions have all matched from the beginning of the string. But now
you see that there may be an indeterminate amount of stuff at the beginning of the string that you want to ignore.
Rather than trying to match it all just so you can skip over it, let's take a different approach: don't explicitly match the
beginning of the string at all. This approach is shown in the next example.

Example 7.15. Phone Number, Wherever I May Find Ye

>>> phonePattern = re.compile(r'(\d{3})\D*(\d{3})\D*(\d{4})\D*(\d*)$')
>>> phonePattern.search('work 1−(800) 555.1212 #1234').groups()
('800', '555', '1212', '1234')
>>> phonePattern.search('800−555−1212')
('800', '555', '1212', '')
>>> phonePattern.search('80055512121234')
('800', '555', '1212', '1234')

Note the lack of ^ in this regular expression. You are not matching the beginning of the string anymore. There's
nothing that says you need to match the entire input with your regular expression. The regular expression
engine will do the hard work of figuring out where the input string starts to match, and go from there.

Now you can successfully parse a phone number that includes leading characters and a leading digit, plus any
number of any kind of separators around each part of the phone number.

Sanity check. this still works.

That still works too.
See how quickly a regular expression can get out of control? Take a quick glance at any of the previous iterations. Can
you tell the difference between one and the next?

While you still understand the final answer (and it is the final answer; if you've discovered a case it doesn't handle, I
don't want to know about it), let's write it out as a verbose regular expression, before you forget why you made the
choices you made.

Example 7.16. Parsing Phone Numbers (Final Version)

>>> phonePattern = re.compile(r'''
 # don't match beginning of string, number can start anywhere
 (\d{3}) # area code is 3 digits (e.g. '800')

Dive Into Python 92

 \D* # optional separator is any number of non−digits
 (\d{3}) # trunk is 3 digits (e.g. '555')
 \D* # optional separator
 (\d{4}) # rest of number is 4 digits (e.g. '1212')
 \D* # optional separator
 (\d*) # extension is optional and can be any number of digits
 $ # end of string
 ''', re.VERBOSE)
>>> phonePattern.search('work 1−(800) 555.1212 #1234').groups()
('800', '555', '1212', '1234')
>>> phonePattern.search('800−555−1212')
('800', '555', '1212', '')

Other than being spread out over multiple lines, this is exactly the same regular expression as the last step, so
it's no surprise that it parses the same inputs.

Final sanity check. Yes, this still works. You're done.
Further Reading on Regular Expressions

Regular Expression HOWTO (http://py−howto.sourceforge.net/regex/regex.html) teaches about regular
expressions and how to use them in Python.

•

Python Library Reference (http://www.python.org/doc/current/lib/) summarizes the re module
(http://www.python.org/doc/current/lib/module−re.html).

•

7.7. Summary

This is just the tiniest tip of the iceberg of what regular expressions can do. In other words, even though you're
completely overwhelmed by them now, believe me, you ain't seen nothing yet.

You should now be familiar with the following techniques:

^ matches the beginning of a string.•
$ matches the end of a string.•
\b matches a word boundary.•
\d matches any numeric digit.•
\D matches any non−numeric character.•
x? matches an optional x character (in other words, it matches an x zero or one times).•
x* matches x zero or more times.•
x+ matches x one or more times.•
x{n,m} matches an x character at least n times, but not more than m times.•
(a|b|c) matches either a or b or c.•
(x) in general is a remembered group. You can get the value of what matched by using the groups()
method of the object returned by re.search.

•

Regular expressions are extremely powerful, but they are not the correct solution for every problem. You should learn
enough about them to know when they are appropriate, when they will solve your problems, and when they will cause
more problems than they solve.

Some people, when confronted with a problem, think "I know, I'll use regular expressions."
Now they have two problems.

−−Jamie Zawinski, in comp.emacs.xemacs
(http://groups.google.com/groups?selm=33F0C496.370D7C45%40netscape.com)

Dive Into Python 93

http://py-howto.sourceforge.net/regex/regex.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-re.html
http://groups.google.com/groups?selm=33F0C496.370D7C45%40netscape.com

Chapter 8. HTML Processing

8.1. Diving in

I often see questions on comp.lang.python (http://groups.google.com/groups?group=comp.lang.python) like "How can
I list all the [headers|images|links] in my HTML document?" "How do I parse/translate/munge the text of my HTML
document but leave the tags alone?" "How can I add/remove/quote attributes of all my HTML tags at once?" This
chapter will answer all of these questions.

Here is a complete, working Python program in two parts. The first part, BaseHTMLProcessor.py, is a generic
tool to help you process HTML files by walking through the tags and text blocks. The second part, dialect.py, is
an example of how to use BaseHTMLProcessor.py to translate the text of an HTML document but leave the tags
alone. Read the doc strings and comments to get an overview of what's going on. Most of it will seem like black
magic, because it's not obvious how any of these class methods ever get called. Don't worry, all will be revealed in
due time.

Example 8.1. BaseHTMLProcessor.py

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython−examples−5.4.zip) used in this book.

from sgmllib import SGMLParser
import htmlentitydefs

class BaseHTMLProcessor(SGMLParser):
 def reset(self):
 # extend (called by SGMLParser.__init__)

http://groups.google.com/groups?group=comp.lang.python
http://diveintopython.org/download/diveintopython-examples-5.4.zip

 # called for each entity reference, e.g. for "©", ref will be "copy"
 # Reconstruct the original entity reference.
 self.pieces.append("&%(ref)s" % locals())
 # standard HTML entities are closed with a semicolon; other entities are not
 if htmlentitydefs.entitydefs.has_key(ref):
 self.pieces.append(";")

 def handle_data(self, text):
 # called for each block of plain text, i.e. outside of any tag and
 # not containing any character or entity references
 # Store the original text verbatim.
 self.pieces.append(text)

 def handle_comment(self, text):
 # called for each HTML comment, e.g. <!−− insert Javascript code here −−>
 # Reconstruct the original comment.
 # It is especially important that the source document enclose client−side
 # code (like Javascript) within comments so it can pass through this
 # processor undisturbed; see comments in unknown_starttag for details.
 self.pieces.append("<!−−%(text)s−−>" % locals())

 def handle_pi(self, text):
 # called for each processing instruction, e.g. <?instruction>
 # Reconstruct original processing instruction.
 self.pieces.append("<?%(text)s>" % locals())

 def handle_decl(self, text):
 # called for the DOCTYPE, if present, e.g.
 # <!DOCTYPE html PUBLIC "−//W3C//DTD HTML 4.01 Transitional//EN"
 # "http://www.w3.org/TR/html4/loose.dtd">
 # Reconstruct original DOCTYPE
 self.pieces.append("<!%(text)s>" % locals())

 def output(self):
 """Return processed HTML as a single string"""
 return "".join(self.pieces)

Example 8.2. dialect.py

import re
from BaseHTMLProcessor import BaseHTMLProcessor

class Dialectizer(BaseHTMLProcessor):
 subs = ()

 def reset(self):
 # extend (called from __init__ in ancestor)
 # Reset all data attributes
 self.verbatim = 0
 BaseHTMLProcessor.reset(self)

 def start_pre(self, attrs):
 # called for every <pre> tag in HTML source
 # Increment verbatim mode count, then handle tag like normal
 self.verbatim += 1
 self.unknown_starttag("pre", attrs)

 def end_pre(self):
 # called for every </pre> tag in HTML source
 # Decrement verbatim mode count
 self.unknown_endtag("pre")

Dive Into Python 95

 self.verbatim −= 1

 def handle_data(self, text):
 # override
 # called for every block of text in HTML source
 # If in verbatim mode, save text unaltered;
 # otherwise process the text with a series of substitutions
 self.pieces.append(self.verbatim and text or self.process(text))

 def process(self, text):
 # called from handle_data
 # Process text block by performing series of regular expression
 # substitutions (actual substitions are defined in descendant)
 for fromPattern, toPattern in self.subs:
 text = re.sub(fromPattern, toPattern, text)
 return text

class ChefDialectizer(Dialectizer):
 """convert HTML to Swedish Chef−speak

 based on the classic chef.x, copyright (c) 1992, 1993 John Hagerman
 """
 subs = ((r'a([nu])', r'u\1'),
 (r'A([nu])', r'U\1'),
 (r'a\B', r'e'),
 (r'A\B', r'E'),
 (r'en\b', r'ee'),
 (r'\Bew', r'oo'),
 (r'\Be\b', r'e−a'),
 (r'\be', r'i'),
 (r'\bE', r'I'),
 (r'\Bf', r'ff'),
 (r'\Bir', r'ur'),
 (r'(\w*?)i(\w*?)$', r'\1ee\2'),
 (r'\bow', r'oo'),
 (r'\bo', r'oo'),
 (r'\bO', r'Oo'),
 (r'the', r'zee'),
 (r'The', r'Zee'),
 (r'th\b', r't'),
 (r'\Btion', r'shun'),
 (r'\Bu', r'oo'),
 (r'\BU', r'Oo'),
 (r'v', r'f'),
 (r'V', r'F'),
 (r'w', r'w'),
 (r'W', r'W'),
 (r'([a−z])[.]', r'\1. Bork Bork Bork!'))

class FuddDialectizer(Dialectizer):
 """convert HTML to Elmer Fudd−speak"""
 subs = ((r'[rl]', r'w'),
 (r'qu', r'qw'),
 (r'th\b', r'f'),
 (r'th', r'd'),
 (r'n[.]', r'n, uh−hah−hah−hah.'))

class OldeDialectizer(Dialectizer):
 """convert HTML to mock Middle English"""
 subs = ((r'i([bcdfghjklmnpqrstvwxyz])e\b', r'y\1'),
 (r'i([bcdfghjklmnpqrstvwxyz])e', r'y\1\1e'),
 (r'ick\b', r'yk'),
 (r'ia([bcdfghjklmnpqrstvwxyz])', r'e\1e'),

Dive Into Python 96

 (r'e[ea]([bcdfghjklmnpqrstvwxyz])', r'e\1e'),
 (r'([bcdfghjklmnpqrstvwxyz])y', r'\1ee'),
 (r'([bcdfghjklmnpqrstvwxyz])er', r'\1re'),
 (r'([aeiou])re\b', r'\1r'),
 (r'ia([bcdfghjklmnpqrstvwxyz])', r'i\1e'),
 (r'tion\b', r'cioun'),
 (r'ion\b', r'ioun'),
 (r'aid', r'ayde'),
 (r'ai', r'ey'),
 (r'ay\b', r'y'),
 (r'ay', r'ey'),
 (r'ant', r'aunt'),
 (r'ea', r'ee'),
 (r'oa', r'oo'),
 (r'ue', r'e'),
 (r'oe', r'o'),
 (r'ou', r'ow'),
 (r'ow', r'ou'),
 (r'\bhe', r'hi'),
 (r've\b', r'veth'),
 (r'se\b', r'e'),
 (r"'s\b", r'es'),
 (r'ic\b', r'ick'),
 (r'ics\b', r'icc'),
 (r'ical\b', r'ick'),
 (r'tle\b', r'til'),
 (r'll\b', r'l'),
 (r'ould\b', r'olde'),
 (r'own\b', r'oune'),
 (r'un\b', r'onne'),
 (r'rry\b', r'rye'),
 (r'est\b', r'este'),
 (r'pt\b', r'pte'),
 (r'th\b', r'the'),
 (r'ch\b', r'che'),
 (r'ss\b', r'sse'),
 (r'([wybdp])\b', r'\1e'),
 (r'([rnt])\b', r'\1\1e'),
 (r'from', r'fro'),
 (r'when', r'whan'))

 import webbrowser
 webbrowser.open_new(outfile)

if __name__ == "__main__":
 test("http://diveintopython.org/odbchelper_list.html")

Example 8.3. Output of dialect.py

Running this script will translate Section 3.2, �Introducing Lists� into mock Swedish Chef−speak
(../native_data_types/chef.html) (from The Muppets), mock Elmer Fudd−speak (../native_data_types/fudd.html) (from
Bugs Bunny cartoons), and mock Middle English (../native_data_types/olde.html) (loosely based on Chaucer's The
Canterbury Tales). If you look at the HTML source of the output pages, you'll see that all the HTML tags and
attributes are untouched, but the text between the tags has been "translated" into the mock language. If you look
closer, you'll see that, in fact, only the titles and paragraphs were translated; the code listings and screen examples
were left untouched.

<div class="abstract">
<p>Lists awe Pydon's wowkhowse datatype.
If youw onwy expewience wif wists is awways in
Visuaw Basic ow (God fowbid) de datastowe
in Powewbuiwdew, bwace youwsewf fow
Pydon wists.</p>
</div>

8.2. Introducing sgmllib.py

HTML processing is broken into three steps: breaking down the HTML into its constituent pieces, fiddling with the
pieces, and reconstructing the pieces into HTML again. The first step is done by sgmllib.py, a part of the standard
Python library.

The key to understanding this chapter is to realize that HTML is not just text, it is structured text. The structure is
derived from the more−or−less−hierarchical sequence of start tags and end tags. Usually you don't work with HTML
this way; you work with it textually in a text editor, or visually in a web browser or web authoring tool. sgmllib.py
presents HTML structurally.

sgmllib.py contains one important class: SGMLParser. SGMLParser parses HTML into useful pieces, like
start tags and end tags. As soon as it succeeds in breaking down some data into a useful piece, it calls a method on
itself based on what it found. In order to use the parser, you subclass the SGMLParser class and override these

Character reference
An escaped character referenced by its decimal or hexadecimal equivalent, like . When found,
SGMLParser calls handle_charref with the text of the decimal or hexadecimal character equivalent.

Entity reference
An HTML entity, like ©. When found, SGMLParser calls handle_entityref with the name of
the HTML entity.

Comment
An HTML comment, enclosed in <!−− ... −−>. When found, SGMLParser calls handle_comment
with the body of the comment.

Processing instruction
An HTML processing instruction, enclosed in <? ... >. When found, SGMLParser calls handle_pi
with the body of the processing instruction.

Declaration
An HTML declaration, such as a DOCTYvfj
/F4 11 Tf.><? ... >. When found, SGMLParser

http://diveintopython.org/

start tag: <head>
data: '\n '
start tag: <meta http−equiv="Content−Type" content="text/html; charset=ISO−8859−1" >
data: '\n \n '
start tag: <title>
data: 'Dive Into Python'
end tag: </title>
data: '\n '
start tag: <link rel="stylesheet" href="diveintopython.css" type="text/css" >
data: '\n '

... rest of output omitted for brevity ...

Here's the roadmap for the rest of the chapter:

Subclass SGMLParser to create classes that extract interesting data out of HTML documents.•
Subclass SGMLParser to create BaseHTMLProcessor, which overrides all 8 handler methods and uses
them to reconstruct the original HTML from the pieces.

•

Subclass BaseHTMLProcessor to create Dialectizer, which adds some methods to process specific
HTML tags specially, and overrides the handle_data method to provide a framework for processing the
text blocks between the HTML tags.

•

Subclass Dialectizer to create classes that define text processing rules used by
Dialectizer.handle_data.

•

Write a test suite that grabs a real web page from http://diveintopython.org/ and processes it.•

Along the way, you'll also learn about locals, globals, and dictionary−based string formatting.

8.3. Extracting data from HTML documents

To extract data from HTML documents, subclass the SGMLParser class and define methods for each tag or entity
you want to capture.

The first step to extracting data from an HTML document is getting some HTML. If you have some HTML lying
around on your hard drive, you can use file functions to read it, but the real fun begins when you get HTML from live
web pages.

Example 8.5. Introducing urllib

>>> import urllib
>>> sock = urllib.urlopen("http://diveintopython.org/")
>>> htmlSource = sock.read()
>>> sock.close()
>>> print htmlSource
<!DOCTYPE html PUBLIC "−//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"><html><head>
 <meta http−equiv='Content−Type' content='text/html; charset=ISO−8859−1'>
 <title>Dive Into Python</title>
<link rel='stylesheet' href='diveintopython.css' type='text/css'>
<link rev='made' href='mailto:mark@diveintopython.org'>
<meta name='keywords' content='Python, Dive Into Python, tutorial, object−oriented, programming, documentation, book, free'>
<meta name='description' content='a free Python tutorial for experienced programmers'>
</head>
<body bgcolor='white' text='black' link='#0000FF' vlink='#840084' alink='#0000FF'>
<table cellpadding='0' cellspacing='0' border='0' width='100%'>
<tr><td class='header' width='1%' valign='top'>diveintopython.org</td>
<td width='99%' align='right'><hr size='1' noshade></td></tr>
<tr><td class='tagline' colspan='2'>Python for experienced programmers</td></tr>

Dive Into Python 100

http://diveintopython.org/download/diveintopython-examples-5.4.zip

 if htmlentitydefs.entitydefs.has_key(ref):
 self.pieces.append(";")

 def handle_data(self, text):
 self.pieces.append(text)

 def handle_comment(self, text):
 self.pieces.append("<!−−%(text)s−−>" % locals())

 def handle_pi(self, text):
 self.pieces.append("<?%(text)s>" % locals())

 def handle_decl(self, text):
 self.pieces.append("<!%(text)s>" % locals())

reset, called by SGMLParser.__init__, initializes self.pieces as an empty list before calling the
ancestor method. self.pieces is a data attribute which will hold the pieces of the HTML document you're
constructing. Each handler method will reconstruct the HTML that SGMLParser parsed, and each method
will append that string to self.pieces. Note that self.pieces is a list. You might be tempted to define
it as a string and just keep appending each piece to it. That would work, but Python is much more efficient at
dealing with lists.

[2]

Since BaseHTMLProcessor does not define any methods for specific tags (like the start_a method in
URLLister), SGMLParser will call unknown_starttag for every start tag. This method takes the tag
(tag) and the list of attribute name/value pairs (attrs), reconstructs the original HTML, and appends it to
self.pieces. The string formatting here is a little strange; you'll untangle that (and also the odd−looking
locals function) later in this chapter.

Reconstructing end tags is much simpler; just take the tag name and wrap it in the </...> brackets.

When SGMLParser finds a character reference, it calls handle_charref with the bare reference. If the
HTML document contains the reference , ref will be 160. Reconstructing the original complete
character reference just involves wrapping ref in &#...; characters.

Entity references are similar to character references, but without the hash mark. Reconstructing the original
entity reference requires wrapping ref in &...; characters. (Actually, as an erudite reader pointed out to me,
it's slightly more complicated than this. Only certain standard HTML entites end in a semicolon; other
similar−looking entities do not. Luckily for us, the set of standard HTML entities is defined in a dictionary in a
Python module called htmlentitydefs. Hence the extra if statement.)

Blocks of text are simply appended to self.pieces unaltered.

HTML comments are wrapped in <!−−...−−> characters.

Processing instructions are wrapped in <?...> characters.

The HTML specification requires that all non−HTML (like client−side JavaScript) must be enclosed in HTML
comments, but not all web pages do this properly (and all modern web browsers are forgiving if they don't).
BaseHTMLProcessor is not forgiving; if script is improperly embedded, it will be parsed as if it were HTML. For
instance, if the script contains less−than and equals signs, SGMLParser may incorrectly think that it has found tags
and attributes. SGMLParser always converts tags and attribute names to lowercase, which may break the script,
and BaseHTMLProcessor always encloses attribute values in double quotes (even if the original HTML
document used single quotes or no quotes), which will certainly break the script. Always protect your client−side
script within HTML comments.

Example 8.9. BaseHTMLProcessor output

 def output(self):
 """Return processed HTML as a single string"""
 return "".join(self.pieces)

Dive Into Python 103

http://www.w3.org/
http://www.w3.org/TR/REC-html40/charset.html#entities
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-htmlentitydefs.html

variables in the local namespace.

This prints x= 1, not x= 2.

After being burned by locals, you might think that this wouldn't change the value of z, but it does.
Due to internal differences in how Python is implemented (which I'd rather not go into, since I don't fully
understand them myself), globals

Example 8.15. More dictionary−based string formatting

 def unknown_starttag(self, tag, attrs):
 strattrs = "".join([' %s="%s"' % (key, value) for key, value in attrs])
 self.pieces.append("<%(tag)s%(strattrs)s>" % locals())

When this method is called, attrs is a list of key/value tuples, just like the items of a dictionary, which
means you can use multi−variable assignment to iterate through it. This should be a familiar pattern by now,
but there's a lot going on here, so let's break it down:

Suppose attrs is [('href', 'index.html'), ('title', 'Go to home page')].a.
In the first round of the list comprehension, key will get 'href', and value will get
'index.html'.

b.

The string formatting ' %s="%s"' % (key, value) will resolve to
' href="index.html"'. This string becomes the first element of the list comprehension's return
value.

c.

In the second round, key will get 'title', and value will get 'Go to home page'.d.
The string formatting will resolve to ' title="Go to home page"'.e.
The list comprehension returns a list of these two resolved strings, and strattrs will join both
elements of this list together to form ' href="index.html" title="Go to home page"'.

f.

Now, using dictionary−based string formatting, you insert the value of tag and strattrs into a string. So if
tag is 'a', the final result would be '',
and that is what gets appended to self.pieces.

Using dictionary−based string formatting with locals is a convenient way of making complex string formatting

http://groups.google.com/groups?group=comp.lang.python

... </body>

... </html>

... """
>>> from BaseHTMLProcessor import BaseHTMLProcessor
>>> parser = BaseHTMLProcessor()
>>> parser.feed(htmlSource)
>>> print parser.output()
<html>
<head>
<title>Test page</title>
</head>
<body>

Home
Table of contents
Revision history
</body>
</html>

Note that the attribute values of the href attributes in the <a> tags are not properly quoted. (Also note that
you're using triple quotes for something other than a doc string. And directly in the IDE, no less. They're
very useful.)

Feed the parser.

Using the output function defined in BaseHTMLProcessor, you get the output as a single string, complete
with quoted attribute values. While this may seem anti−climactic, think about how much has actually happened
here: SGMLParser parsed the entire HTML document, breaking it down into tags, refs, data, and so forth;
BaseHTMLProcessor used those elements to reconstruct pieces of HTML (which are still stored in
parser.pieces, if you want to see them); finally, you called parser.output, which joined all the
pieces of HTML into one string.

8.8. Introducing dialect.py

Dialectizer is a simple (and silly) descendant of BaseHTMLProcessor. It runs blocks of text through a series
of substitutions, but it makes sure that anything within a <pre>...</pre> block passes through unaltered.

To handle the <pre> blocks, you define two methods in Dialectizer: start_pre and end_pre.

Example 8.17. Handling specific tags

 def start_pre(self, attrs):
 self.verbatim += 1
 self.unknown_starttag("pre", attrs)

 def end_pre(self):
 self.unknown_endtag("pre")
 self.verbatim −= 1

start_pre is called every time SGMLParser finds a <pre> tag in the HTML source. (In a minute, you'll
see exactly how this happens.) The method takes a single parameter, attrs, which contains the attributes of
the tag (if any). attrs is a list of key/value tuples, just like unknown_starttag takes.

In the reset method, you initialize a data attribute that serves as a counter for <pre> tags. Every time you hit
a <pre> tag, you increment the counter; every time you hit a </pre> tag, you'll decrement the counter. (You
could just use this as a flag and set it to 1 and reset it to 0, but it's just as easy to do it this way, and this handles
the odd (but possible) case of nested <pre> tags.) In a minute, you'll see how this counter is put to good use.

Dive Into Python 109

That's it, that's the only special processing you do for <pre> tags. Now you pass the list of attributes along to
unknown_starttag so it can do the default processing.

end_pre is called every time SGMLParser finds a </pre> tag. Since end tags can not contain attributes,
the method takes no parameters.

First, you want to do the default processing, just like any other end tag.

Second, you decrement your counter to signal that this <pre> block has been closed.
At this point, it's worth digging a little further into SGMLParser. I've claimed repeatedly (and you've taken it on
faith so far) that SGMLParser looks for and calls specific methods for each tag, if they exist. For instance, you just
saw the definition of start_pre and end_pre to handle <pre> and </pre>. But how does this happen? Well,
it's not magic, it's just good Python coding.

Example 8.18. SGMLParser

 def finish_starttag(self, tag, attrs):
 try:
 method = getattr(self, 'start_' + tag)
 except AttributeError:
 try:
 method = getattr(self, 'do_' + tag)
 except AttributeError:
 self.unknown_starttag(tag, attrs)
 return −1
 else:
 self.handle_starttag(tag, method, attrs)
 return 0
 else:
 self.stack.append(tag)
 self.handle_starttag(tag, method, attrs)
 return 1

 def handle_starttag(self, tag, method, attrs):
 method(attrs)

At this point, SGMLParser has already found a start tag and parsed the attribute list. The only
thing left to do is figure out whether there is a specific handler method for this tag, or whether
you should fall back on the default method (unknown_starttag).

The "magic" of SGMLParser is nothing more than your old friend, getattr. What you may
not have realized before is that getattr will find methods defined in descendants of an
object as well as the object itself. Here the object is self, the current instance. So if tag is
'pre', this call to getattr will look for a start_pre method on the current instance,
which is an instance of the Dialectizer class.

getattr raises an AttributeError if the method it's looking for doesn't exist in the
object (or any of its descendants), but that's okay, because you wrapped the call to getattr
inside a try...except block and explicitly caught the AttributeError.

Since you didn't find a start_xxx method, you'll also look for a do_xxx method before
giving up. This alternate naming scheme is generally used for standalone tags, like
,
which have no corresponding end tag. But you can use either naming scheme; as you can see,
SGMLParser tries both for every tag. (You shouldn't define both a start_xxx and
do_xxx handler method for the same tag, though; only the start_xxx method will get
called.)

Another AttributeError, which means that the call to getattr failed with do_xxx.
Since you found neither a start_xxx nor a do_xxx method for this tag, you catch the

Dive Into Python 110

exception and fall back on the default method, unknown_starttag.

Remember, try...except blocks can have an else clause, which is called if no exception
is raised during the try...except block. Logically, that means that you did find a do_xxx
method for this tag, so you're going to call it.

By the way, don't worry about these different return values; in theory they mean something, but

 s o c k = u r l l i b . u r l o p e n (u r l)

 h t m l S o u r c e = s o c k . r e a d ()

 s o c k . c l o s e ()

T h e t r a n s l a t e f u n c t i o n h a s a n o p t i o n a l a r g u m e n t d i a l e c t N a m e , w h i c h i s a s t r i n g t h a t s p e c i f i e s
t h e d i a l e c t y o u ' l l b e u s i n g . Y o u ' l l s e e h o w t h i s i s u s e d i n a m i n u t e .

H e y , w a i t a m i n u t e , t h e r e ' s a n i m p o r t s t a t e m e n t i n t h i s f u n c t i o n ! T h a t ' s p e r f e c t l y l e g a l i n P y t h o n .
Y o u ' r e u s e d t o s e e i n g i m p o r t s t a t e m e n t s a t t h e t o p o f a p r o g r a m , w h i c h m e a n s t h a t t h e i m p o r t e d
m o d u l e i s a v a i l a b l e a n y w h e r e i n t h e p r o g r a m . B u t y o u c a n a l s o i m p o r t m o d u l e s w i t h i n a f u n c t i o n ,
w h i c h m e a n s t h a t t h e i m p o r t e d m o d u l e i s o n l y a v a i l a b l e w i t h i n t h e f u n c t i o n . I f y o u h a v e a m o d u l e t h a t
i s o n l y e v e r u s e d i n o n e f u n c t i o n , t h i s i s a n e a s y w a y t o m a k e y o u r c o d e m o r e m o d u l a r . (W h e n y o u f i n d
t h a t y o u r w e e k e n d h a c k h a s t u r n e d i n t o a n 8 0 0 − l i n e w o r k o f a r t a n d d e c i d e t o s p l i t i t u p i n t o a d o z e n
r e u s a b l e m o d u l e s , y o u ' l l a p p r e c i a t e t h i s .)

N o w y o u g e t t h e s o u r c e o f t h e g i v e n U R L .

E x a m p l e 8 . 2 1 . T h e t r a n s l a t e f u n c t i o n , p a r t 2 : c u r i o u s e r a n d c u r i o u s e r
 p a r s e r N a m e = " % s D i a l e c t i z e r " % d i a l e c t N a m e . c a p i t a l i z e ()

 p a r s e r C l a s s = g l o b a l s () [p a r s e r N a m e]

dialect, you would simply add an appropriately−named file in the plug−ins directory (like foodialect.py which
contains the FooDialectizer class). Calling the translate function with the dialect name 'foo' would find
the module foodialect.py, import the class FooDialectizer, and away you go.

Example 8.22. The translate function, part 3

 parser.feed(htmlSource)
 parser.close()
 return parser.output()

After all that imagining, this is going to seem pretty boring, but the feed function is what does the entire
transformation. You had the entire HTML source in a single string, so you only had to call feed once.
However, you can call feed as often as you want, and the parser will just keep parsing. So if you were worried
about memory usage (or you knew you were going to be dealing with very large HTML pages), you could set
this up in a loop, where you read a few bytes of HTML and fed it to the parser. The result would be the same.

Because feed maintains an internal buffer, you should always call the parser's close method when you're
done (even if you fed it all at once, like you did). Otherwise you may find that your output is missing the last
few bytes.

Remember, output is the function you defined on BaseHTMLProcessor that joins all the pieces of output
you've buffered and returns them in a single string.

And just like that, you've "translated" a web page, given nothing but a URL and the name of a dialect.

Further reading

You thought I was kidding about the server−side scripting idea. So did I, until I found this web−based
dialectizer (http://rinkworks.com/dialect/). Unfortunately, source code does not appear to be available.

•

8.10. Summary

Python provides you with a powerful tool, sgmllib.py, to manipulate HTML by turning its structure into an object
model. You can use this tool in many different ways.

parsing the HTML looking for something specific•
aggregating the results, like the URL lister•
altering the structure along the way, like the attribute quoter•
transforming the HTML into something else by manipulating the text while leaving the tags alone, like the
Dialectizer

•

Along with these examples, you should be comfortable doing all of the following things:

Using locals() and globals() to access namespaces•
Formatting strings using dictionary−based substitutions•

[1] The technical term for a parser like SGMLParser is a consumer: it consumes HTML and breaks it down.
Presumably, the name feed was chosen to fit into the whole "consumer" motif. Personally, it makes me think of an
exhibit in the zoo where there's just a dark cage with no trees or plants or evidence of life of any kind, but if you stand
perfectly still and look really closely you can make out two beady eyes staring back at you from the far left corner, but
you convince yourself that that's just your mind playing tricks on you, and the only way you can tell that the whole
thing isn't just an empty cage is a small innocuous sign on the railing that reads, "Do not feed the parser." But maybe

Dive Into Python 113

http://rinkworks.com/dialect/

that's just me. In any event, it's an interesting mental image.

[2] The reason Python is better at lists than strings is that lists are mutable but strings are immutable. This means that
appending to a list just adds the element and updates the index. Since strings can not be changed after they are created,
code like s = s + newpiece will create an entirely new string out of the concatenation of the original and the
new piece, then throw away the original string. This involves a lot of expensive memory management, and the amount
of effort involved increases as the string gets longer, so doing s = s + newpiece in a loop is deadly. In technical
terms, appending n items to a list is O(n), while appending n items to a string is O(n2).

[3] I don't get out much.

[4] All right, it's not that common a question. It's not up there with "What editor should I use to write Python code?"
(answer: Emacs) or "Is Python better or worse than Perl?" (answer: "Perl is worse than Python because people wanted
it worse." −Larry Wall, 10/14/1998) But questions about HTML processing pop up in one form or another about once
a month, and among those questions, this is a popular one.

Dive Into Python 114

http://directory.google.com/Top/Computers/Data_Formats/Markup_Languages/XML/Resources/FAQs,_Help,_and_Tutorials/
http://diveintopython.org/download/diveintopython-examples-5.4.zip

 def refresh(self):
 """reset output buffer, re−parse entire source file, and return output

 Since parsing involves a good deal of randomness, this is an
 easy way to get new output without having to reload a grammar file
 each time.
 """
 self.reset()
 self.parse(self.source)
 return self.output()

 def output(self):
 """output generated text"""
 return "".join(self.pieces)

 def randomChildElement(self, node):
 """choose a random child element of a node

 This is a utility method used by do_xref and do_choice.
 """
 choices = [e for e in node.childNodes
 if e.nodeType == e.ELEMENT_NODE]
 chosen = random.choice(choices)
 if _debug:
 sys.stderr.write('%s available choices: %s\n' % \
 (len(choices), [e.toxml() for e in choices]))
 sys.stderr.write('Chosen: %s\n' % chosen.toxml())
 return chosen

 def parse(self, node):
 """parse a single XML node

 A parsed XML document (from minidom.parse) is a tree of nodes
 of various types. Each node is represented by an instance of the
 corresponding Python class (Element for a tag, Text for
 text data, Document for the top−level document). The following
 statement constructs the name of a class method based on the type
 of node we're parsing ("parse_Element" for an Element node,
 "parse_Text" for a Text node, etc.) and then calls the method.
 """
 parseMethod = getattr(self, "parse_%s" % node.__class__.__name__)
 parseMethod(node)

 def parse_Document(self, node):
 """parse the document node

 The document node by itself isn't interesting (to us), but
 its only child, node.documentElement, is: it's the root node
 of the grammar.
 """
 self.parse(node.documentElement)

 def parse_Text(self, node):
 """parse a text node

 The text of a text node is usually added to the output buffer
 verbatim. The one exception is that <p class='sentence'> sets
 a flag to capitalize the first letter of the next word. If
 that flag is set, we capitalize the text and reset the flag.
 """
 text = node.data
 if self.capitalizeNextWord:
 self.pieces.append(text[0].upper())

Dive Into Python 117

 self.pieces.append(text[1:])
 self.capitalizeNextWord = 0
 else:
 self.pieces.append(text)

 def parse_Element(self, node):
 """parse an element

 An XML element corresponds to an actual tag in the source:
 <xref id='...'>, <p chance='...'>, <choice>, etc.
 Each element type is handled in its own method. Like we did in
 parse(), we construct a method name based on the name of the
 element ("do_xref" for an <xref> tag, etc.) and
 call the method.
 """
 handlerMethod = getattr(self, "do_%s" % node.tagName)
 handlerMethod(node)

 def parse_Comment(self, node):
 """parse a comment

 The grammar can contain XML comments, but we ignore them
 """
 pass

 def do_xref(self, node):
 """handle <xref id='...'> tag

 An <xref id='...'> tag is a cross−reference to a <ref id='...'>
 tag. <xref id='sentence'/> evaluates to a randomly chosen child of
 <ref id='sentence'>.
 """
 id = node.attributes["id"].value
 self.parse(self.randomChildElement(self.refs[id]))

 def do_p(self, node):
 """handle <p> tag

 The <p> tag is the core of the grammar. It can contain almost
 anything: freeform text, <choice> tags, <xref> tags, even other
 <p> tags. If a "class='sentence'" attribute is found, a flag
 is set and the next word will be capitalized. If a "chance='X'"
 attribute is found, there is an X% chance that the tag will be
 evaluated (and therefore a (100−X)% chance that it will be
 completely ignored)
 """
 keys = node.attributes.keys()
 if "class" in keys:
 if node.attributes["class"].value == "sentence":
 self.capitalizeNextWord = 1
 if "chance" in keys:
 chance = int(node.attributes["chance"].value)
 doit = (chance > random.randrange(100))
 else:
 doit = 1
 if doit:
 for child in node.childNodes: self.parse(child)

 def do_choice(self, node):
 """handle <choice> tag

 A <choice> tag contains one or more <p> tags. One <p> tag
 is chosen at random and evaluated; the rest are ignored.

Dive Into Python 118

 """
 self.parse(self.randomChildElement(node))

def usage():
 print __doc__

def main(argv):
 grammar = "kant.xml"
 try:
 opts, args = getopt.getopt(argv, "hg:d", ["help", "grammar="])
 except getopt.GetoptError:
 usage()
 sys.exit(2)
 for opt, arg in opts:
 if opt in ("−h", "−−help"):
 usage()
 sys.exit()
 elif opt == '−d':
 global _debug
 _debug = 1
 elif opt in ("−g", "−−grammar"):
 grammar = arg

 source = "".join(args)

 k = KantGenerator(grammar, source)
 print k.output()

if __name__ == "__main__":
 main(sys.argv[1:])

Example 9.2. toolbox.py

"""Miscellaneous utility functions"""

def openAnything(source):
 """URI, filename, or string −−> stream

 This function lets you define parsers that take any input source
 (URL, pathname to local or network file, or actual data as a string)
 and deal with it in a uniform manner. Returned object is guaranteed
 to have all the basic stdio read methods (read, readline, readlines).
 Just .close() the object when you're done with it.

 Examples:
 >>> from xml.dom import minidom
 >>> sock = openAnything("http://localhost/kant.xml")
 >>> doc = minidom.parse(sock)
 >>> sock.close()
 >>> sock = openAnything("c:\\inetpub\\wwwroot\\kant.xml")
 >>> doc = minidom.parse(sock)
 >>> sock.close()
 >>> sock = openAnything("<ref id='conjunction'><text>and</text><text>or</text></ref>")
 >>> doc = minidom.parse(sock)
 >>> sock.close()
 """
 if hasattr(source, "read"):
 return source

 if source == '−':
 import sys

Dive Into Python 119

 return sys.stdin

 # try to open with urllib (if source is http, ftp, or file URL)
 import urllib
 try:
 return urllib.urlopen(source)
 except (IOError, OSError):
 pass

 # try to open with native open function (if source is pathname)
 try:
 return open(source)
 except (IOError, OSError):
 pass

 # treat source as string
 import StringIO
 return StringIO.StringIO(str(source))

Run the program kgp.py

This is, of course, complete gibberish. Well, not complete gibberish. It is syntactically and grammatically correct
(although very verbose −− Kant wasn't what you would call a get−to−the−point kind of guy). Some of it may actually
be true (or at least the sort of thing that Kant would have agreed with), some of it is blatantly false, and most of it is
simply incoherent. But all of it is in the style of Immanuel Kant.

Let me repeat that this is much, much funnier if you are now or have ever been a philosophy major.

The interesting thing about this program is that there is nothing Kant−specific about it. All the content in the previous
example was derived from the grammar file, kant.xml. If you tell the program to use a different grammar file
(which you can specify on the command line), the output will be completely different.

Example 9.4. Simpler output from kgp.py

[you@localhost kgp]$ python kgp.py −g binary.xml
00101001
[you@localhost kgp]$ python kgp.py −g binary.xml
10110100

You will take a closer look at the structure of the grammar file later in this chapter. For now, all you need to know is
that the grammar file defines the structure of the output, and the kgp.py program reads through the grammar and
makes random decisions about which words to plug in where.

9.2. Packages

Actually parsing an XML document is very simple: one line of code. However, before you get to that line of code, you

have been unwieldy (as of this writing, the XML package has over 3000 lines of code) and difficult to manage
(separate source files mean multiple people can work on different areas simultaneously).

If you ever find yourself writing a large subsystem in Python (or, more likely, when you realize that your small
subsystem has grown into a large one), invest some time designing a good package architecture. It's one of the many
things Python is good at, so take advantage of it.

9.3. Parsing XML

As I was saying, actually parsing an XML document is very simple: one line of code. Where you go from there is up
to you.

Example 9.8. Loading an XML document (for real this time)

>>> from xml.dom import minidom
>>> xmldoc = minidom.parse('~/diveintopython/common/py/kgp/binary.xml')
>>> xmldoc
<xml.dom.minidom.Document instance at 010BE87C>
>>> print xmldoc.toxml()
<?xml version="1.0" ?>
<grammar>
<ref id="bit">
 <p>0</p>
 <p>1</p>
</ref>
<ref id="byte">
 <p><xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/>\
<xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/></p>
</ref>
</grammar>

As you saw in the previous section, this imports the minidom module from the xml.dom package.

Here is the one line of code that does all the work: minidom.parse takes one argument and returns a parsed
representation of the XML document. The argument can be many things; in this case, it's simply a filename of
an XML document on my local disk. (To follow along, you'll need to change the path to point to your
downloaded examples directory.) But you can also pass a file object, or even a file−like object. You'll take
advantage of this flexibility later in this chapter.

The object returned from minidom.parse is a Document object, a descendant of the Node class. This
Document object is the root level of a complex tree−like structure of interlocking Python objects that
completely represent the XML document you passed to minidom.parse.

toxml is a method of the Node class (and is therefore available on the Document object you got from
minidom.parse). toxml prints out the XML that this Node represents. For the Document node, this
prints out the entire XML document.

Now that you have an XML document in memory, you can start traversing through it.

Example 9.9. Getting child nodes

>>> xmldoc.childNodes
[<DOM Element: grammar at 17538908>]
>>> xmldoc.childNodes[0]
<DOM Element: grammar at 17538908>
>>> xmldoc.firstChild
<DOM Element: grammar at 17538908>

Dive Into Python 123

Every Node has a childNodes attribute, which is a list of the Node objects. A Document always has only
one child node, the root element of the XML document (in this case, the grammar element).

To get the first (and in this case, the only) child node, just use regular list syntax. Remember, there is nothing
special going on here; this is just a regular Python list of regular Python objects.

Since getting the first child node of a node is a useful and common activity, the Node class has a
firstChild attribute, which is synonymous with childNodes[0]. (There is also a lastChild
attribute, which is synonymous with childNodes[−1].)

Example 9.10. toxml works on any node

>>> grammarNode = xmldoc.firstChild
>>> print grammarNode.toxml()
<grammar>
<ref id="bit">
 <p>0</p>
 <p>1</p>
</ref>
<ref id="byte">
 <p><xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/>\
</a

The second child is an Element object representing the first ref element.

The fourth child is an Element object representing the second ref element.

The last child is a Text object representing the carriage return after the '</ref>' end tag and before the
'</grammar>' end tag.

Example 9.12. Drilling down all the way to text

>>> grammarNode
<DOM Element: grammar at 19167148>
>>> refNode = grammarNode.childNodes[1]
>>> refNode
<DOM Element: ref at 17987740>
>>> refNode.childNodes
[<DOM Text node "\n">, <DOM Text node " ">, <DOM Element: p at 19315844>, \
<DOM Text node "\n">, <DOM Text node " ">, \
<DOM Element: p at 19462036>, <DOM Text node "\n">]
>>> pNode = refNode.childNodes[2]
>>> pNode
<DOM Element: p at 19315844>
>>>

of the characters in the original unicode string.

Printing the koi8−r−encoded string will probably show gibberish on your screen, because your
Python IDE is interpreting those characters as iso−8859−1, not koi8−r. But at least they do
print. (And, if you look carefully, it's the same gibberish that you saw when you opened the
original XML document in a non−unicode−aware text editor. Python converted it from koi8−r
into unicode when it parsed the XML document, and you've just converted it back.)

To sum up, unicode itself is a bit intimidating if you've never seen it before, but unicode data is really very easy to
handle in Python. If your XML documents are all 7−bit ASCII (like the examples in this chapter), you will literally
never think about unicode. Python will convert the ASCII data in the XML documents into unicode while parsing, and
auto−coerce it back to ASCII whenever necessary, and you'll never even notice. But if you need to deal with that in
other languages, Python is ready.

Further reading

Unicode.org (http://www.unicode.org/) is the home page of the unicode standard, including a brief technical
introduction (http://www.unicode.org/standard/principles.html).

•

Unicode Tutorial (http://www.reportlab.com/i18n/python_unicode_tutorial.html) has some more examples of
how to use Python's unicode functions, including how to force Python to coerce unicode into ASCII even
when it doesn't really want to.

•

PEP 263 (http://www.python.org/peps/pep−0263.html) goes into more detail about how and when to define a
character encoding in your .py files.

•

9.5. Searching for elements

Traversing XML documents by stepping through each node can be tedious. If you're looking for something in
particular, buried deep within your XML document, there is a shortcut you can use to find it quickly:
getElementsByTagName.

For this section, you'll be using the binary.xml grammar file, which looks like this:

Example 9.20. binary.xml

<?xml version="1.0"?>
<!DOCTYPE grammar PUBLIC "−//diveintopython.org//DTD Kant Generator Pro v1.0//EN" "kgp.dtd">
<grammar>
<ref id="bit">
 <p>0</p>
 <p>1</p>
</ref>
<ref id="byte">
 <p><xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/>\
<xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/></p>
</ref>
</grammar>

It has two refs, 'bit' and 'byte'. A bit is either a '0' or '1', and a byte is 8 bits.

Example 9.21. Introducing getElementsByTagName

>>> from xml.dom import minidom
>>> xmldoc = minidom.parse('binary.xml')
>>> reflist = xmldoc.getElementsByTagName('ref')

Dive Into Python 129

http://www.unicode.org/
http://www.unicode.org/standard/principles.html
http://www.reportlab.com/i18n/python_unicode_tutorial.html
http://www.python.org/peps/pep-0263.html

>>> reflist
[<DOM Element: ref at 136138108>, <DOM Element: ref at 136144292>]
>>> print reflist[0].toxml()
<ref id="bit">
 <p>0</p>
 <p>1</p>
</ref>
>>> print reflist[1].toxml()
<ref id="byte">
 <p><xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/>\
<xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/></p>
</ref>

getElementsByTagName takes one argument, the name of the element you wish to find. It
returns a list of Element objects, corresponding to the XML elements that have that name. In
this case, you find two ref elements.

Example 9.22. Every element is searchable

>>> firstref = reflist[0]
>>> print firstref.toxml()
<ref id="bit">
 <p>0</p>
 <p>1</p>
</ref>
>>> plist = firstref.getElementsByTagName("p")
>>> plist
[<DOM Element: p at 136140116>, <DOM Element: p at 136142172>]
>>> print plist[0].toxml()
<p>0</p>
>>> print plist[1].toxml()
<p>1</p>

Continuing from the previous example, the first object in your reflist is the 'bit' ref element.

You can use the same getElementsByTagName method on this Element to find all the <p> elements
within the 'bit' ref element.

Just as before, the getElementsByTagName method returns a list of all the elements it found. In this case,
you have two, one for each bit.

Example 9.23. Searching is actually recursive

>>> plist = xmldoc.getElementsByTagName("p")
>>> plist
[<DOM Element: p at 136140116>, <DOM Element: p at 136142172>, <DOM Element: p at 136146124>]
>>> plist[0].toxml()
'<p>0</p>'
>>> plist[1].toxml()
'<p>1</p>'
>>> plist[2].toxml()
'<p><xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/>\
<xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/></p>'

Note carefully the difference between this and the previous example. Previously, you were searching for p
elements within firstref, but here you are searching for p elements within xmldoc, the root−level object
that represents the entire XML document. This does find the p elements nested within the ref elements within
the root grammar element.

The first two p elements are within the first ref (the 'bit' ref).

Dive Into Python 130

The last p element is the one within the second ref (the 'byte'ref).

9.6. Accessing element attributes

XML elements can have one or more attributes, and it is incredibly simple to access them once you have parsed an
XML document.

For this section, you'll be using the binary.xml grammar file that you saw in the previous section.

This section may be a little confusing, because of some overlapping terminology. Elements in an XML document
have attributes, and Python objects also have attributes. When you parse an XML document, you get a bunch of
Python objects that represent all the pieces of the XML document, and some of these Python objects represent
attributes of the XML elements. But the (Python) objects that represent the (XML) attributes also have (Python)
attributes, which are used to access various parts of the (XML) attribute that the object represents. I told you it was
confusing. I am open to suggestions on how to distinguish these more clearly.

Example 9.24. Accessing element attributes

>>> xmldoc = minidom.parse('binary.xml')
>>> reflist = xmldoc.getElementsByTagName('ref')
>>> bitref = reflist[0]
>>> print bitref.toxml()
<ref id="bit">
 <p>0</p>
 <p>1</p>
</ref>
>>> bitref.attributes
<xml.dom.minidom.NamedNodeMap instance at 0x81e0c9c>
>>> bitref.attributes.keysrg 0 −11.063 Td(>>>)Tj
(bitref.attPu'id'y) attribute0 0.00 rg 0 −11.063 Td(>>>)Tj
(bitref.attributes)Tj
0.0a attd(>ne or mor)Tj
(bitr,0 10Tref−11.k.Xktes.4>3 Td(>>>)Tj
(bitref.attPu'id'y) attribute0 0.00 rg 0 −11.063["id"3 Td(>>>)Tjnt bitref.toxml())T>ne or mor bitr,0 10Tref−11.k.Xktes.4> Td(>>>)Tj

>>> a
<xml.dom.minidom.Attr instance at 0x81d5044>
>>> a.name
u'id'
>>> a.value
u'bit'

The Attr object completely represents a single XML attribute of a single XML element. The
name of the attribute (the same name as you used to find this object in the

Example 10.2. Parsing XML from a URL

>>> import urllib
>>> usock = urllib.urlopen('http://slashdot.org/slashdot.rdf')
>>> xmldoc = minidom.parse(usock)
>>> usock.close()
>>> print xmldoc.toxml()
<?xml version="1.0" ?>
<rdf:RDF xmlns="http://my.netscape.com/rdf/simple/0.9/"
 xmlns:rdf="http://www.w3.org/1999/02/22−rdf−syntax−ns#">

<channel>
<title>Slashdot</title>
<link>http://slashdot.org/</link>
<description>News for nerds, stuff that matters</description>
</channel>



<item>
<title>To HDTV or Not to HDTV?</title>
<link>http://slashdot.org/article.pl?sid=01/12/28/0421241</link>
</item>

[...snip...]

As you saw in a previous chapter, urlopen takes a web page URL and returns a file−like object. Most
importantly, this object has a read method which returns the HTML source of the web page.

Now you pass the file−like object to minidom.parse, which obediently calls the read method of the object
and parses the XML data that the read method returns. The fact that this XML data is now coming straight
from a web page is completely irrelevant. minidom.parse doesn't know about web pages, and it doesn't care
about web pages; it just knows about file−like objects.

As soon as you're done with it, be sure to close the file−like object that urlopen gives you.

By the way, this URL is real, and it really is XML. It's an XML representation of the current headlines on
Slashdot (http://slashdot.org/), a technical news and gossip site.

Example 10.3. Parsing XML from a string (the easy but inflexible way)

>>> contents = "<grammar><ref id='bit'><p>0</p><p>1</p></ref></grammar>"
>>> xmldoc = minidom.parseString(contents)
>>> print xmldoc.toxml()
<?xml version="1.0" ?>
<grammar><ref id="bit"><p>0</p><p>1</p></ref></grammar>

minidom has a method, parseString, which takes an entire XML document as a string and parses it. You
can use this instead of minidom.parse if you know you already have your entire XML document in a string.

OK, so you can use the minidom.parse function for parsing both local files and remote URLs, but for parsing
strings, you use... a different function. That means that if you want to be able to take input from a file, a URL, or a
string, you'll need special logic to check whether it's a string, and call the parseString function instead. How
unsatisfying.

http://slashdot.org/

Example 10.4. Introducing StringIO

>>> contents = "<grammar><ref id='bit'><p>0</p><p>1</p></ref></grammar>"
>>> import StringIO
>>> ssock = StringIO.StringIO(contents)
>>> ssock.read()
"<grammar><ref id='bit'><p>0</p><p>1</p></ref></grammar>"
>>> ssock.read()
''
>>> ssock.seek(0)
>>> ssock.read(15)
'<grammar><ref i'
>>> ssock.read(15)
"d='bit'><p>0</p"
>>> ssock.read()
'><p>1</p></ref></grammar>'
>>> ssock.close()

The StringIO module contains a single class, also called StringIO, which allows you to turn a string
into a file−like object. The StringIO class takes the string as a parameter when creating an instance.

Now you have a file−like object, and you can do all sorts of file−like things with it. Like readrample 10.4. Introdui

IDE, stdout and stderr default to your "Interactive Window".)

Example 10.8. Introducing stdout and stderr

>>> for i in range(3):
... print 'Dive in'
Dive in
Dive in
Dive in
>>> import sys
>>> for i in range(3):
... sys.stdout.write('Dive in')
Dive inDive inDive in
>>> for i in range(3):
... sys.stderr.write('Dive in')
Dive inDive inDive in

As you saw in Example 6.9, �Simple Counters�, you can use Python's built−in range function to build simple
counter loops that repeat something a set number of times.

stdout is a file−like object; calling its write function will print out whatever string you give it. In fact, this
is what the print function really does; it adds a carriage return to the end of the string you're printing, and
calls sys.stdout.write.

In the simplest case, stdout and stderr send their output to the same place: the Python IDE (if you're in
one), or the terminal (if you're running Python from the command line). Like stdout, stderr does not add
carriage returns for you; if you want them, add them yourself.

stdout and stderr are both file−like objects, like the ones you discussed in Section 10.1, �Abstracting input
sources�, but they are both write−only. They have no read method, only write. Still, they are file−like objects, and
you can assign any other file− or file−like object to them to redirect their output.

Example 10.9. Redirecting output

[you@localhost kgp]$ python stdout.py
Dive in
[you@localhost kgp]$ cat out.log
This message will be logged instead of displayed

(On Windows, you can use type instead of cat to display the contents of a file.)

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython−examples−5.4.zip) used in this book.

#stdout.py
import sys

print 'Dive in'
saveout = sys.stdout
fsock = open('out.log', 'w')
sys.stdout = fsock
print 'This message will be logged instead of displayed'
sys.stdout = saveout
fsock.close()

This will print to the IDE "Interactive Window" (or the terminal, if running the script from the command line).

Dive Into Python 137

http://diveintopython.org/download/diveintopython-examples-5.4.zip

Always save stdout before redirecting it, so you can set it back to normal later.

Open a file for writing. If the file doesn't exist, it will be created. If the file does exist, it will be overwritten.

Redirect all further output to the new file you just opened.

This will be "printed" to the log file only; it will not be visible in the IDE window or on the screen.

Set stdout back to the way it was before you mucked with it.

Close the log file.
Redirecting stderr works exactly the same way, using sys.stderr instead of sys.stdout.

Example 10.10. Redirecting error information

[you@localhost kgp]$ python stderr.py
[you@localhost kgp]$ cat error.log
Traceback (most recent line last):
 File "stderr.py", line 5, in ?
 raise Exception, 'this error will be logged'
Exception: this error will be logged

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython−examples−5.4.zip) used in this book.

#stderr.py
import sys

fsock = open('error.log', 'w')
sys.stderr = fsock
raise Exception, 'this error will be logged'

Open the log file where you want to store debugging information.

Redirect standard error by assigning the file object of the newly−opened log file to stderr.

Raise an exception. Note from the screen output that this does not print anything on screen. All the normal
traceback information has been written to error.log.

Also note that you're not explicitly closing your log file, nor are you setting stderr back to its original value.
This is fine, since once the program crashes (because of the exception), Python will clean up and close the file
for us, and it doesn't make any difference that stderr is never restored, since, as I mentioned, the program
crashes and Python ends. Restoring the original is more important for stdout, if you expect to go do other
stuff within the same script afterwards.

Since it is so common to write error messages to standard error, there is a shorthand syntax that can be used instead of
going through the hassle of redirecting it outright.

Example 10.11. Printing to stderr

>>> print 'entering function'
entering function
>>> import sys
>>> print >> sys.stderr, 'entering function'
entering function

This shorthand syntax of the print statement can be used to write to any open file, or file−like object. In
this case, you can redirect a single print statement to stderr without affecting subsequent print
statements.

Dive Into Python 138

http://diveintopython.org/download/diveintopython-examples-5.4.zip

Standard input, on the other hand, is a read−only file object, and it represents the data flowing into the program from
some previous program. This will likely not make much sense to classic Mac OS users, or even Windows users unless
you were ever fluent on the MS−DOS command line. The way it works is that you can construct a chain of commands
in a single line, so that one program's output becomes the input for the next program in the chain. The first program
simply outputs to standard output (without doing any special redirecting itself, just doing normal

[... snip ...]

This is the openAnything function from toolbox.py, which you previously examined in
Section 10.1, �Abstracting input sources�. All you've done is add three lines of code at the beginning
of the function to check if the source is "−"; if so, you return sys.stdin. Really, that's it!
Remember, stdin is a file−like object with a read method, so the rest of the code (in kgp.py,
where you call openAnything) doesn't change a bit.

10.3. Caching node lookups

kgp.py employs several tricks which may or may not be useful to you in your XML processing. The first one takes
advantage of the consistent structure of the input documents to build a cache of nodes.

A grammar file defines a series of ref elements. Each ref contains one or more p elements, which can contain a lot
of different things, including xrefs. Whenever you encounter an xref, you look for a corresponding ref element
with the same id attribute, and choose one of the ref element's children and parse it. (You'll see how this random
choice is made in the next section.)

This is how you build up the grammar: define ref elements for the smallest pieces, then define ref elements which
"include" the first ref elements by using xref, and so forth. Then you parse the "largest" reference and follow each
xref, and eventually output real text. The text you output depends on the (random) decisions you make each time
you fill in an xref, so the output is different each time.

This is all very flexible, but there is one downside: performance. When you find an xref and need to find the
corresponding ref element, you have a problem. The xref has an id attribute, and you want to find the ref
element that has that same id attribute, but there is no easy way to do that. The slow way to do it would be to get the
entire list of ref elements each time, then manually loop through and look at each id attribute. The fast way is to do
that once and build a cache, in the form of a dictionary.

Example 10.14. loadGrammar

 def loadGrammar(self, grammar):

Example 10.17. Class names of parsed XML objects

>>> from xml.dom import minidom
>>> xmldoc = minidom.parse('kant.xml')
>>> xmldoc
<xml.dom.minidom.Document instance at 0x01359DE8>
>>> xmldoc.__class__
<class xml.dom.minidom.Document at 0x01105D40>
>>> xmldoc.__class__.__name__
'Document'

Assume for a moment that kant.xml is in the current directory.

As you saw in Section 9.2, �Packages�, the object returned by parsing an XML document is a
Document object, as defined in the minidom.py in the xml.dom package. As you saw in
Section 5.4, �Instantiating Classes�, __class__ is built−in attribute of every Python object.

Furthermore, __name__ is a built−in attribute of every Python class, and it is a string. This string is
not mysterious; it's the same as the class name you type when you define a class yourself. (See
Section 5.3, �Defining Classes�.)

Fine, so now you can get the class name of any particular XML node (since each XML node is represented as a
Python object). How can you use this to your advantage to separate the logic of parsing each node type? The answer is
getattr, which you first saw in Section 4.4, �Getting Object References With getattr�.

Example 10.18. parse, a generic XML node dispatcher

 def parse(self, node):
 parseMethod = getattr(self, "parse_%s" % node.__class__.__name__)
 parseMethod(node)

First off, notice that you're constructing a larger string based on the class name of the node you were passed (in
the node argument). So if you're passed a Document node, you're constructing the string
'parse_Document', and so forth.

Now you can treat that string as a function name, and get a reference to the function itself using getattr

Finally, you can call that function and pass the node itself as an argument. The next example shows the
definitions of each of these functions.

Example 10.19. Functions called by the parse dispatcher

 def parse_Document(self, node):
 self.parse(node.documentElement)

 def parse_Text(self, node):
 text = node.data
 if self.capitalizeNextWord:
 self.pieces.append(text[0].upper())
 self.pieces.append(text[1:])
 self.capitalizeNextWord = 0
 else:
 self.pieces.append(text)

 def parse_Comment(self, node):
 pass

 def parse_Element(self, node):
 handlerMethod = getattr(self, "do_%s" % node.tagName)
 handlerMethod(node)

Dive Into Python 142

parse_Document is only ever called once, since there is only one Document node in an XML document,
and only one Document object in the parsed XML representation. It simply turns around and parses the root
element of the grammar file.

parse_Text is called on nodes that represent bits of text. The function itself does some special processing to
handle automatic capitalization of the first word of a sentence, but otherwise simply appends the represented
text to a list.

parse_Comment is just a pass, since you don't care about embedded comments in the grammar files. Note,
however, that you still need to define the function and explicitly make it do nothing. If the function did not
exist, the generic parse function would fail as soon as it stumbled on a comment, because it would try to find
the non−existent parse_Comment function. Defining a separate function for every node type, even ones you
don't use, allows the generic parse function to stay simple and dumb.

The parse_Element method is actually itself a dispatcher, based on the name of the element's tag. The basic
idea is the same: take what distinguishes elements from each other (their tag names) and dispatch to a separate
function for each of them. You construct a string like 'do_xref' (for an <xref> tag), find a function of that
name, and call it. And so forth for each of the other tag names that might be found in the course of parsing a
grammar file (<p> tags, <choice> tags).

In this example, the dispatch functions parse and parse_Element simply find other methods in the same class. If
your processing is very complex (or you have many different tag names), you could break up your code into separate
modules, and use dynamic importing to import each module and call whatever functions you needed. Dynamic
importing will be discussed in Chapter 16, Functional Programming.

http://diveintopython.org/download/diveintopython-examples-5.4.zip

[you@localhost py]$ python argecho.py −−help
argecho.py
−−help
[you@localhost py]$ python argecho.py −m kant.xml
argecho.py
−m
kant.xml

The first thing to know about sys.argv is that it contains the name of the script you're calling. You
will actually use this knowledge to your advantage later, in Chapter 16, Functional Programming. Don't
worry about it for now.

Command−line arguments are separated by spaces, and each shows up as a separate element in the
sys.argv list.

Command−line flags, like −−help, also show up as their own element in the sys.argv list.

To make things even more interesting, some command−line flags themselves take arguments. For
instance, here you have a flag (−m) which takes an argument (kant.xml). Both the flag itself and the
flag's argument are simply sequential elements in the sys.argv list. No attempt is made to associate
one with the other; all you get is a list.

So as you can see, you certainly have all the information passed on the command line, but then again, it doesn't look
like it's going to be all that easy to actually use it. For simple programs that only take a single argument and have no
flags, you can simply use sys.argv[1] to access the argument. There's no shame in this; I do it all the time. For
more complex programs, you need the getopt module.

Etnsale pr.7722Tj
/F45BntrTj
c(lik 11 Tf (to access tEgr)Tjtule.)Tj
/F5 11 Tf 0 −3ieotic−13.owat lChapter 16,/F45BntrTj
c(lik 11 trTj 11 TfF thatof(f276 Td(ly ha 11 Tfj
/F0 11 Tf (−−help)Tj
/F4 [1:)Tj
0 −13.2 Td(m. Rinembd(wo 11 Tfj
/F0 11 −13.2 Td[0)Tj
0 −13.2 Td(muse thour advantage later, 3.owat lChaprunnqe ;'t lodatedpteran see, you certre cal3.owas a ag ()Tj
/F0 e)mpleqe ve a't loohopt)TjF tsys.a be /F45B youbp.2 TIm on the c " Tents. For)Tj
/j
/w11 Tf
/F4 11 here you ha(Etnmpleqe o appensou neo 11 Tfj
/F0 11 1 11 TfF thatof(f276 Td(lantage 11 Tfj
/F0 11 1 11 TfF thatof(tule.)Tj
0 −1threan sespaces, and s.armere s:/F45Bgrams, yd on 's the)Tt logo asr))b 11 Tfj
/F0 11 (lformatio
/ 11 TfF thatof()@v, strqe pwledge qe p
/F4 11 poleqblan see, you cert1])Tj
−ch.arcut iag ()Tj
/F0 There13.owa led on bp.2longt iag (catch
/F4 11 There1t lounde sTj
dve a'is;ro be all a f 11 spaces, and ag (

So what are all those parameters you pass to the getopt function? Well, the first one is simply the raw list of
command−line flags and arguments (not including the first element, the script name, which you already chopped off
before calling the main function). The second is the list of short command−line flags that the script accepts.

"hg:d"

−h
print usage summary

−g ...
use specified grammar file or URL

−d
show debugging information while parsing

The first and third flags are simply standalone flags; you specify them or you don't, and they do things (print help) or
change state (turn on debugging). However, the second flag (−g) must be followed by an argument, which is the name
of the grammar file to read from. In fact it can be a filename or a web address, and you don't know which yet (you'll
figure it out later), but you know it has to be something. So you tell getopt this by putting a colon after the g in that
second parameter to the getopt function.

To further complicate things, the script accepts either short flags (like −h) or long flags (like −−help), and you want
them to do the same thing. This is what the third parameter to getopt is for, to specify a list of the long flags that
correspond to the short flags you specified in the second parameter.

["help", "grammar="]

−−help
print usage summary

−−grammar ...
use specified grammar file or URL

Three things of note here:

All long flags are preceded by two dashes on the command line, but you don't include those dashes when
calling getopt. They are understood.

1.

The −−grammar flag must always be followed by an additional argument, just like the −g flag. This is
notated by an equals sign, "grammar=".

2.

The list of long flags is shorter than the list of short flags, because the −d flag does not have a corresponding
long version. This is fine; only −d will turn on debugging. But the order of short and long flags needs to be
the same, so you'll need to specify all the short flags that do have corresponding long flags first, then all the
rest of the short flags.

3.

Confused yet? Let's look at the actual code and see if it makes sense in context.

Example 10.23. Handling command−line arguments in kgp.py

def main(argv):
 grammar = "kant.xml"
 try:
 opts, args = getopt.getopt(argv, "hg:d", ["help", "grammar="])
 except getopt.GetoptError:
 usage()
 sys.exit(2)
 for opt, arg in opts:

Dive Into Python 145

 if opt in ("−h", "−−help"):
 usage()
 sys.exit()
 elif opt == '−d':
 global _debug
 _debug = 1
 elif opt in ("−g", "−−grammar"):
 grammar = arg

 source = "".join(args)

 k = KantGenerator(grammar, source)
 print k.output()

 def _load(self, source):
 sock = toolbox.openAnything(source)
 xmldoc = minidom.parse(sock).documentElement
 sock.close()

Oh, and along the way, you take advantage of your knowledge of the structure of the XML document to set up a little
cache of references, which are just elements in the XML document.

 def loadGrammar(self, grammar):
 for ref in self.grammar.getElementsByTagName("ref"):
 self.refs[ref.attributes["id"].value] = ref

If you specified some source material on the command line, you use that; otherwise you rip through the grammar
looking for the "top−level" reference (that isn't referenced by anything else) and use that as a starting point.

Chapter 11. HTTP Web Services

11.1. Diving in

You've learned about HTML processing and XML processing, and along the way you saw how to download a web
page and how to parse XML from a URL, but let's dive into the more general topic of HTTP web services.

Simply stated, HTTP web services are programmatic ways of sending and receiving data from remote servers using
the operations of HTTP directly. If you want to get data from the server, use a straight HTTP GET; if you want to
send new data to the server, use HTTP POST. (Some more advanced HTTP web service APIs also define ways of
modifying existing data and deleting data, using HTTP PUT and HTTP DELETE.) In other words, the "verbs" built
into the HTTP protocol (GET, POST, PUT, and DELETE) map directly to application−level operations for receiving,
sending, modifying, and deleting data.

The main advantage of this approach is simplicity, and its simplicity has proven popular with a lot of different sites.
Data −− usually XML data −− can be built and stored statically, or generated dynamically by a server−side script, and
all major languages include an HTTP library for downloading it. Debugging is also easier, because you can load up
the web service in any web browser and see the raw data. Modern browsers will even nicely format and pretty−print
XML data for you, to allow you to quickly navigate through it.

Examples of pure XML−over−HTTP web services:

Amazon API (http://www.amazon.com/webservices) allows you to retrieve product information from the
Amazon.com online store.

•

National Weather Service (http://www.nws.noaa.gov/alerts/) (United States) and Hong Kong Observatory
(http://demo.xml.weather.gov.hk/) (Hong Kong) offer weather alerts as a web service.

•

Atom API (http://atomenabled.org/) for managing web−based content.•
Syndicated feeds (http://syndic8.com/) from weblogs and news sites bring you up−to−the−minute news from
a variety of sites.

•

In later chapters, you'll explore APIs which use HTTP as a transport for sending and receiving data, but don't map
application semantics to the underlying HTTP semantics. (They tunnel everything over HTTP POST.) But this chapter
will concentrate on using HTTP GET to get data from a remote server, and you'll explore several HTTP features you
can use to get the maximum benefit out of pure HTTP web services.

Here is a more advanced version of the openanything

http://www.amazon.com/webservices
http://www.nws.noaa.gov/alerts/
http://demo.xml.weather.gov.hk/
http://atomenabled.org/
http://syndic8.com/
http://diveintopython.org/download/diveintopython-examples-5.4.zip

 return result

 def http_error_302(self, req, fp, code, msg, headers):
 result = urllib2.HTTPRedirectHandler.http_error_302(
 self, req, fp, code, msg, headers)
 result.status = code
 return result

class DefaultErrorHandler(urllib2.HTTPDefaultErrorHandler):
 def http_error_default(self, req, fp, code, msg, headers):
 result = urllib2.HTTPError(
 req.get_full_url(), code, msg, headers, fp)
 result.status = code
 return result

def openAnything(source, etag=None, lastmodified=None, agent=USER_AGENT):
 '''URL, filename, or string −−> stream

 This function lets you define parsers that take any input source
 (URL, pathname to local or network file, or actual data as a string)
 and deal with it in a uniform manner. Returned object is guaranteed
 to have all the basic stdio read methods (read, readline, readlines).
 Just .close() the object when you're done with it.

 If the etag argument is supplied, it will be used as the value of an
 If−None−Match request header.

 If the lastmodified argument is supplied, it must be a formatted
 date/time string in GMT (as returned in the Last−Modified header of
 a previous request). The formatted date/time will be used
 as the value of an If−Modified−Since request header.

 If the agent argument is supplied, it will be used as the value of a
 User−Agent request header.
 '''

 if hasattr(source, 'read'):
 return source

 if source == '−':
 return sys.stdin

 if urlparse.urlparse(source)[0] == 'http':
 # open URL with urllib2
 request = urllib2.Request(source)
 request.add_header('User−Agent', agent)
 if etag:
 request.add_header('If−None−Match', etag)
 if lastmodified:
 request.add_header('If−Modified−Since', lastmodified)
 request.add_header('Accept−encoding', 'gzip')
 opener = urllib2.build_opener(SmartRedirectHandler(), DefaultErrorHandler())
 return opener.open(request)

 # try to open with native open function (if source is a filename)
 try:
 return open(source)
 except (IOError, OSError):
 pass

 # treat source as string
 return StringIO(str(source))

Dive Into Python 150

http://webservices.xml.com/pub/a/ws/2002/02/06/rest.html

11.3. Features of HTTP

There are five important features of HTTP which you should support.

11.3.1. User−Agent

The User−Agent is simply a way for a client to tell a server who it is when it requests a web page, a syndicated
feed, or any sort of web service over HTTP. When the client requests a resource, it should always announce who it is,
as specifically as possible. This allows the server−side administrator to get in touch with the client−side developer if
anything is going fantastically wrong.

By default, Python sends a generic User−Agent: Python−urllib/1.15. In the next section, you'll see how to
change this to something more specific.

11.3.2. Redirects

Sometimes resources move around. Web sites get reorganized, pages move to new addresses. Even web services can
reorganize. A syndicated feed at http://example.com/index.xml might be moved to
http://example.com/xml/atom.xml. Or an entire domain might move, as an organization expands and
reorganizes; for instance, http://www.example.com/index.xml might be redirected to
http://server−farm−1.example.com/index.xml.

Every time you request any kind of resource from an HTTP server, the server includes a status code in its response.
Status code 200 means "everything's normal, here's the page you asked for". Status code 404 means "page not
found". (You've probably seen 404 errors while browsing the web.)

HTTP has two different ways of signifying that a resource has moved. Status code 302 is a temporary redirect; it
means "oops, that got moved over here temporarily" (and then gives the temporary address in a Location: header).
Status code 301 is a permanent redirect; it means "oops, that got moved permanently" (and then gives the new
address in a Location: header). If you get a 302 status code and a new address, the HTTP specification says you
should use the new address to get what you asked for, but the next time you want to access the same resource, you
should retry the old address. But if you get a 301 status code and a new address, you're supposed to use the new
address from then on.

urllib.urlopen will automatically "follow" redirects when it receives the appropriate status code from the HTTP
server, but unfortunately, it doesn't tell you when it does so. You'll end up getting data you asked for, but you'll never
know that the underlying library "helpfully" followed a redirect for you. So you'll continue pounding away at the old
address, and each time you'll get redirected to the new address. That's two round trips instead of one: not very
efficient! Later in this chapter, you'll see how to work around this so you can deal with permanent redirects properly
and efficiently.

11.3.3. Last−Modified/If−Modified−Since

Some data changes all the time. The home page of CNN.com is constantly updating every few minutes. On the other
hand, the home page of Google.com only changes once every few weeks (when they put up a special holiday logo, or
advertise a new service). Web services are no different; usually the server knows when the data you requested last
changed, and HTTP provides a way for the server to include this last−modified date along with the data you requested.

If you ask for the same data a second time (or third, or fourth), you can tell the server the last−modified date that you
got last time: you send an If−Modified−Since header with your request, with the date you got back from the
server last time. If the data hasn't changed since then, the server sends back a special HTTP status code 304, which

Dive Into Python 152

means "this data hasn't changed since the last time you asked for it". Why is this an improvement? Because when the
server sends a 304, it doesn't re−send the data. All you get is the status code. So you don't need to download the
same data over and over again if it hasn't changed; the server assumes you have the data cached locally.

All modern web browsers support last−modified date checking. If you've ever visited a page, re−visited the same page
a day later and found that it hadn't changed, and wondered why it loaded so quickly the second time −− this could be
why. Your web browser cached the contents of the page locally the first time, and when you visited the second time,
your browser automatically sent the last−modified date it got from the server the first time. The server simply says
304: Not Modified, so your browser knows to load the page from its cache. Web services can be this smart too.

Python's URL library has no built−in support for last−modified date checking, but since you can add arbitrary headers
to each request and read arbitrary headers in each response, you can add support for it yourself.

11.3.4. ETag/If−None−Match

ETags are an alternate way to accomplish the same thing as the last−modified date checking: don't re−download data
that hasn't changed. The way it works is, the server sends some sort of hash of the data (in an ETag header) along
with the data you requested. Exactly how this hash is determined is entirely up to the server. The second time you
request the same data, you include the ETag hash in an If−None−Match: header, and if the data hasn't changed,
the server will send you back a 304 status code. As with the last−modified date checking, the server just sends the
304; it doesn't send you the same data a second time. By including the ETag hash in your second request, you're
telling the server that there's no need to re−send the same data if it still matches this hash, since you still have the data
from the last time.

Python's URL library has no built−in support for ETags, but you'll see how to add it later in this chapter.

11.3.5. Compression

The last important HTTP /F9eooi the data fied date checkinows to lznhe l kheckinows st important HTa

>>> import urllib
>>> feeddata = urllib.urlopen('http://diveintomark.org/xml/atom.xml').read()
connect: (diveintomark.org, 80)
send: '
GET /xml/atom.xml HTTP/1.0
Host: diveintomark.org
User−agent: Python−urllib/1.15
'
reply: 'HTTP/1.1 200 OK\r\n'
header: Date: Wed, 14 Apr 2004 22:27:30 GMT
header: Server: Apache/2.0.49 (Debian GNU/Linux)
header: Content−Type: application/atom+xml
header: Last−Modified: Wed, 14 Apr 2004 22:14:38 GMT
header: ETag: "e8284−68e0−4de30f80"
header: Accept−Ranges: bytes
header: Content−Length: 26848
header: Connection: close

urllib relies on another standard Python library, httplib. Normally you don't need to
import httplib directly (urllib does that automatically), but you will here so you can
set the debugging flag on the HTTPConnection class that urllib uses internally to connect
to the HTTP server. This is an incredibly useful technique. Some other Python libraries have
similar debug flags, but there's no particular standard for naming them or turning them on; you
need to read the documentation of each library to see if such a feature is available.

Now that the debugging flag is set, information on the the HTTP request and response is printed
out in real time. The first thing it tells you is that you're connecting to the server
diveintomark.org on port 80, which is the standard port for HTTP.

When you request the Atom feed, urllib sends three lines to the server. The first line
specifies the HTTP verb you're using, and the path of the resource (minus the domain name).
All the requests in this chapter will use GET, but in the next chapter on SOAP, you'll see that it
uses POST for everything. The basic syntax is the same, regardless of the verb.

The second line is the Host header, which specifies the domain name of the service you're
accessing

11.5. Setting the User−Agent

The first step to improving your HTTP web services client is to identify yourself properly with a User−Agent. To
do that, you need to move beyond the basic urllib and dive into urllib2.

Example 11.4. Introducing urllib2

>>> import httplib
>>> httplib.HTTPConnection.debuglevel = 1
>>> import urllib2
>>> request = urllib2.Request('http://diveintomark.org/xml/atom.xml')
>>> opener = urllib2.build_opener()
>>> feeddata = opener.open(request).read()
connect: (diveintomark.org, 80)
send: '
GET /xml/atom.xml HTTP/1.0
Host: diveintomark.org
User−agent: Python−urllib/2.1
'
reply: 'HTTP/1.1 200 OK\r\n'
header: Date: Wed, 14 Apr 2004 23:23:12 GMT
header: Server: Apache/2.0.49 (Debian GNU/Linux)
header: Content−Type: application/atom+xml
header: Last−Modified: Wed, 14 Apr 2004 22:14:38 GMT
header: ETag: "e8284−68e0−4de30f80"
header: Accept−Ranges: bytes
header: Content−Length: 26848
header: Connection: close

If you still have your Python IDE open from the previous section's example, you can skip this, but this turns on
HTTP debugging so you can see what you're actually sending over the wire, and what gets sent back.

Fetching an HTTP resource with urllib2 is a three−step process, for good reasons that will become clear
shortly. The first step is to create a Request object, which takes the URL of the resource you'll eventually get
around to retrieving. Note that this step doesn't actually retrieve anything yet.

The second step is to build a URL opener. This can take any number of handlers, which control how responses
are handled. But you can also build an opener without any custom handlers, which is what you're doing here.
You'll see how to define and use custom handlers later in this chapter when you explore redirects.

The final step is to tell the opener to open the URL, using the Request object you created. As you can see
from all the debugging information that gets printed, this step actually retrieves the resource and stores the
returned data in feeddata.

Example 11.5. Adding headers with the Request

>>> request
<urllib2.Request instance at 0x00250AA8>
>>> request.get_full_url()
http://diveintomark.org/xml/atom.xml
>>> request.add_header('User−Agent',
... 'OpenAnything/1.0 +http://diveintopython.org/')
>>> feeddata = opener.open(request).read()
connect: (diveintomark.org, 80)
send: '
GET /xml/atom.xml HTTP/1.0
Host: diveintomark.org
User−agent: OpenAnything/1.0 +http://diveintopython.org/
'

Dive Into Python 155

reply: 'HTTP/1.1 200 OK\r\n'
header: Date: Wed, 14 Apr 2004 23:45:17 GMT
header: Server: Apache/2.0.49 (Debian GNU/Linux)
header: Content−Type: application/atom+xml
header: Last−Modified: Wed, 14 Apr 2004 22:14:38 GMT
header: ETag: "e8284−68e0−4de30f80"
header: Accept−Ranges: bytes
header: Content−Length: 26848
header: Connection: close

You're continuing from the previous example; you've already created a Request object with the URL
you want to access.

Using the

Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "c:\python23\lib\urllib2.py", line 326, in open
 '_open', req)
 File "c:\python23\lib\urllib2.py", line 306, in _call_chain
 result = func(*args)
 File "c:\python23\lib\urllib2.py", line 901, in http_open
 return self.do_open(httplib.HTTP, req)
 File "c:\python23\lib\urllib2.py", line 895, in do_open
 return self.parent.error('http', req, fp, code, msg, hdrs)
 File "c:\python23\lib\urllib2.py", line 352, in error
 return self._call_chain(*args)
 File "c:\python23\lib\urllib2.py", line 306, in _call_chain
 result = func(*args)
 File "c:\python23\lib\urllib2.py", line 412, in http_error_default
 raise HTTPError(req.get_full_url(), code, msg, hdrs, fp)
urllib2.HTTPError: HTTP Error 304: Not Modified

Remember all those HTTP headers you saw printed out when you turned on debugging? This is how you can
get access to them programmatically: firstdatastream.headers is an object that acts like a dictionary
and allows you to get any of the individual headers returned from the HTTP server.

On the second request, you add the If−Modified−Since header with the last−modified date from the first

Example 11.8. Using custom URL handlers

>>> request.headers
{'If−modified−since': 'Thu, 15 Apr 2004 19:45:21 GMT'}
>>> import openanything
>>> opener = urllib2.build_opener(
... openanything.DefaultErrorHandler())
>>> seconddatastream = opener.open(request)
>>> seconddatastream.status
304
>>> seconddatastream.read()
''

You're continuing the previous example, so the Request object is already set up, and you've already added the
If−Modified−Since header.

This is the key: now that you've defined your custom URL handler, you need to tell urllib2 to use it.
Remember how I said that urllib2 broke up the process of accessing an HTTP resource into three steps, and
for good reason? This is why building the URL opener is its own step, because you can build it with your own
custom URL handlers that override urllib2's default behavior.

Now you can quietly open the resource, and what you get back is an object that, along with the usual headers
(use seconddatastream.headers.dict to acess them), also contains the HTTP status code. In this
case, as you expected, the status is 304, meaning this data hasn't changed since the last time you asked for it.

Note that when the server sends back a 304 status code, it doesn't re−send the data. That's the whole point: to
save bandwidth by not re−downloading data that hasn't changed. So if you actually want that data, you'll need
to cache it locally the first time you get it.

Handling ETag works much the same way, but instead of checking for Last−Modified and sending
If−Modified−Since, you check for ETag and send If−None−Match. Let's start with a fresh IDE session.

Example 11.9. Supporting ETag/If−None−Match

>>> import urllib2, openanything
>>> request = urllib2.Request('http://diveintomark.org/xml/atom.xml')
>>> opener = urllib2.build_opener(
... openanything.DefaultErrorHandler())
>>> firstdatastream = opener.open(request)
>>> firstdatastream.headers.get('ETag')
'"e842a−3e53−55d97640"'
>>> firstdata = firstdatastream.read()
>>> print firstdata
<?xml version="1.0" encoding="iso−8859−1"?>
<feed version="0.3"
 xmlns="http://purl.org/atom/ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xml:lang="en">
 <title mode="escaped">dive into mark</title>
 <link rel="alternate" type="text/html" href="http://diveintomark.org/"/>
 <−− rest of feed omitted for brevity −−>
>>> request.add_header('If−None−Match',
... firstdatastream.headers.get('ETag'))
>>> seconddatastream = opener.open(request)
>>> seconddatastream.status
304
>>> seconddatastream.read()
''

Dive Into Python 158

Using the firstdatastream.headers pseudo−dictionary, you can get the ETag
returned from the server. (What happens if the server didn't send back an ETag? Then this line
would return None.)

OK, you got the data.

Now set up the second call by setting the If−None−Match header to the ETag you got from
the first call.

The second call succeeds quietly (without throwing an exception), and once again you see that
the server has sent back a 304 status code. Based on the ETag you sent the second time, it
knows that the data hasn't changed.

Regardless of whether the 304 is triggered by Last−Modified date checking or ETag
hash matching, you'll never get the data along with the 304. That's the whole point.

In these examples, the HTTP server has supported both Last−Modified and ETag headers, but not all servers do.
As a web services client, you should be prepared to support both, but you must code defensively in case a server only
supports one or the other, or neither.

11.7. Handling redirects

header: Content−Type: application/atom+xml
>>> f.url
'http://diveintomark.org/xml/atom.xml'
>>> f.headers.dict
{'content−length': '15955',
'accept−ranges': 'bytes',
'server': 'Apache/2.0.49 (Debian GNU/Linux)',
'last−modified': 'Thu, 15 Apr 2004 19:45:21 GMT',
'connection': 'close',
'etag': '"e842a−3e53−55d97640"',
'date': 'Thu, 15 Apr 2004 22:06:25 GMT',
'content−type': 'application/atom+xml'}
>>> f.status
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
AttributeError: addinfourl instance has no attribute 'status'

You'll be better able to see what's happening if you turn on debugging.

This is a URL which I have set up to permanently redirect to my Atom feed at
http://diveintomark.org/xml/atom.xml.

Sure enough, when you try to download the data at that address, the server sends back a 301 status code, telling
you that the resource has moved permanently.

The server also sends back a Location: header that gives the new address of this data.

urllib2 notices the redirect status code and automatically tries to retrieve the data at the new location
specified in the Location: header.

The object you get back from the opener contains the new permanent address and all the headers returned
from the second request (retrieved from the new permanent address). But the status code is missing, so you
have no way of knowing programmatically whether this redirect was temporary or permanent. And that matters
very much: if it was a temporary redirect, then you should continue to ask for the data at the old location. But if
it was a permanent redirect (as this was), you should ask for the data at the new location from now on.

This is suboptimal, but easy to fix. urllib2 doesn't behave exactly as you want it to when it encounters a 301 or
302, so let's override its behavior. How? With a custom URL handler, just like you did to handle 304 codes.

Example 11.11. Defining the redirect handler

This class is defined in openanything.py.

class SmartRedirectHandler(urllib2.HTTPRedirectHandler):
 def http_error_301(self, req, fp, code, msg, headers):
 result = urllib2.HTTPRedirectHandler.http_error_301(
 self, req, fp, code, msg, headers)
 result.status = code
 return result

 def http_error_302(self, req, fp, code, msg, headers):
 result = urllib2.HTTPRedirectHandler.http_error_302(
 self, req, fp, code, msg, headers)
 result.status = code
 return result

Redirect behavior is defined in urllib2 in a class called HTTPRedirectHandler. You
don't want to completely override the behavior, you just want to extend it a little, so you'll
subclass HTTPRedirectHandler so you can call the ancestor class to do all the hard work.

Dive Into Python 160

When it encounters a 301 status code from the server, urllib2 will search through its handlers
and call the http_error_301 method. The first thing ours does is just call the
http_error_301 method in the ancestor, which handles the grunt work of looking for the
Location: header and following the redirect to the new address.

Here's the key: before you return, you store the status code (301), so that the calling program can
access it later.

Temporary redirects (status code 302) work the same way: override the http_error_302
method, call the ancestor, and save the status code before returning.

So what has this bought us? You can now build a URL opener with the custom redirect handler, and it will still
automatically follow redirects, but now it will also expose the redirect status code.

Example 11.12. Using the redirect handler to detect permanent redirects

>>> request = urllib2.Request('http://diveintomark.org/redir/example301.xml')
>>> import openanything, httplib
>>> httplib.HTTPConnection.debuglevel = 1
>>> opener = urllib2.build_opener(
... openanything.SmartRedirectHandler())
>>> f = opener.open(request)
connect: (diveintomark.org, 80)
send: 'GET /redir/example301.xml HTTP/1.0
Host: diveintomark.org
User−agent: Python−urllib/2.1
'
reply: 'HTTP/1.1 301 Moved Permanently\r\n'
header: Date: Thu, 15 Apr 2004 22:13:21 GMT
header: Server: Apache/2.0.49 (Debian GNU/Linux)
header: Location: http://diveintomark.org/xml/atom.xml
header: Content−Length: 338
header: Connection: close
header: Content−Type: text/html; charset=iso−8859−1
connect: (diveintomark.org, 80)
send: '
GET /xml/atom.xml HTTP/1.0
Host: diveintomark.org
User−agent: Python−urllib/2.1
'
reply: 'HTTP/1.1 200 OK\r\n'
header: Date: Thu, 15 Apr 2004 22:13:21 GMT
header: Server: Apache/2.0.49 (Debian GNU/Linux)
header: Last−Modified: Thu, 15 Apr 2004 19:45:21 GMT
header: ETag: "e842a−3e53−55d97640"
header: Accept−Ranges: bytes
header: Content−Length: 15955
header: Connection: close
header: Content−Type: application/atom+xml

>>> f.status
301
>>> f.url
'http://diveintomark.org/xml/atom.xml'

First, build a URL opener with the redirect handler you just defined.

You sent off a request, and you got a 301 status code in response. At this point, the http_error_301
method gets called. You call the ancestor method, which follows the redirect and sends a request at the new
location (http://diveintomark.org/xml/atom.xml).

Dive Into Python 161

maybe not. Maybe it will redirect to a different address. It's not for you to say. The server said this redirect was
only temporary, so you should respect that. And now you're exposing enough information that the calling
application can respect that.

11.8. Handling compressed data

The last important HTTP feature you want to support is compression. Many web services have the ability to send data
compressed, which can cut down the amount of data sent over the wire by 60% or more. This is especially true of
XML web services, since XML data compresses very well.

Servers won't give you compressed data unless you tell them you can handle it.

Example 11.14. Telling the server you would like compressed data

>>> import urllib2, httplib
>>> httplib.HTTPConnection.debuglevel = 1
>>> request = urllib2.Request('http://diveintomark.org/xml/atom.xml')
>>> request.add_header('Accept−encoding', 'gzip')
>>> opener = urllib2.build_opener()
>>> f = opener.open(request)
connect: (diveintomark.org, 80)
send: '
GET /xml/atom.xml HTTP/1.0
Host: diveintomark.org
User−agent: Python−urllib/2.1
Accept−encoding: gzip
'
reply: 'HTTP/1.1 200 OK\r\n'
header: Date: Thu, 15 Apr 2004 22:24:39 GMT
header: Server: Apache/2.0.49 (Debian GNU/Linux)
header: Last−Modified: Thu, 15 Apr 2004 19:45:21 GMT
header: ETag: "e842a−3e53−55d97640"
header: Accept−Ranges: bytes
header: Vary: Accept−Encoding
header: Content−Encoding: gzip
header: Content−Length: 6289
header: Connection: close
header: Content−Type: application/atom+xml

This is the key: once you've created your Request object, add an Accept−encoding header to tell the
server you can accept gzip−encoded data. gzip is the name of the compression algorithm you're using. In
theory there could be other compression algorithms, but gzip is the compression algorithm used by 99% of
web servers.

There's your header going across the wire.

And here's what the server sends back: the Content−Encoding: gzip header means that the data you're
about to receive has been gzip−compressed.

The Content−Length header is the length of the compressed data, not the uncompressed data. As you'll see
in a minute, the actual length of the uncompressed data was 15955, so gzip compression cut your bandwidth by
over 60%!

Example 11.15. Decompressing the data

>>> compresseddata = f.read()
>>> len(compresseddata)
6289
>>> import StringIO

Dive Into Python 163

>>> compressedstream = StringIO.StringIO(compresseddata)
>>> import gzip
>>> gzipper = gzip.GzipFile(fileobj=compressedstream)
>>> data = gzipper.read()
>>> print data
<?xml version="1.0" encoding="iso−8859−1"?>
<feed version="0.3"
 xmlns="http://purl.org/atom/ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xml:lang="en">
 <title mode="escaped">dive into mark</title>
 <link rel="alternate" type="text/html" href="http://diveintomark.org/"/>
 <−− rest of feed omitted for brevity −−>
>>> len(data)
15955

Continuing from the previous example, f is the file−like object returned from the URL opener.
Using its read() method would ordinarily get you the uncompressed data, but since this data
has been gzip−compressed, this is just the first step towards getting the data you really want.

OK, this step is a little bit of messy workaround. Python has a gzip module, which reads (and
actually writes) gzip−compressed files on disk. But you don't have a file on disk, you have a
gzip−compressed buffer in memory, and you don't want to write out a temporary file just so you
can uncompress it. So what you're going to do is create a file−like object out of the in−memory
data (compresseddata), using the StringIO module. You first saw the StringIO
module in the previous chapter, but now you've found another use for it.

Now you can create an instance of GzipFile, and tell it that its "file" is the file−like object
compressedstream.

This is the line that does all the actual work: "reading" from GzipFile will decompress the
data. Strange? Yes, but it makes sense in a twisted kind of way. gzipper is a file−like object
which represents a gzip−compressed file. That "file" is not a real file on disk, though; gzipper
is really just "reading" from the file−like object you created with StringIO to wrap the
compressed data, which is only in memory in the variable compresseddata. And where did
that compressed data come from? You originally downloaded it from a remote HTTP server by
"reading" from the file−like object you built with urllib2.build_opener. And amazingly,
this all just works. Every step in the chain has no idea that the previous step is faking it.

Look ma, real data. (15955 bytes of it, in fact.)
"But wait!" I hear you cry. "This could be even easier!" I know what you're thinking. You're thinking that
opener.open returns a file−like object, so why not cut out the StringIO middleman and just pass f directly to
GzipFile? OK, maybe you weren't thinking that, but don't worry about it, because it doesn't work.

Example 11.16. Decompressing the data directly from the server

>>> f = opener.open(request)
>>> f.headers.get('Content−Encoding')
'gzip'
>>> data = gzip.GzipFile(fileobj=f).read()
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "c:\python23\lib\gzip.py", line 217, in read
 self._read(readsize)
 File "c:\python23\lib\gzip.py", line 252, in _read
 pos = self.fileobj.tell() # Save current position
AttributeError: addinfourl instance has no attribute 'tell'

Dive Into Python 164

Continuing from the previous example, you already have a Request object set up with an
Accept−encoding: gzip header.

Simply opening the request will get you the headers (though not download any data yet). As you can see from

This function is defined in openanything.py.

def fetch(source, etag=None, last_modified=None, agent=USER_AGENT):
 '''Fetch data and metadata from a URL, file, stream, or string'''
 result = {}
 f = openAnything(source, etag, last_modified, agent)
 result['data'] = f.read()
 if hasattr(f, 'headers'):
 # save ETag, if the server sent one
 result['etag'] = f.headers.get('ETag')
 # save Last−Modified header, if the server sent one
 result['lastmodified'] = f.headers.get('Last−Modified')
 if f.headers.get('content−encoding', '') == 'gzip':
 # data came back gzip−compressed, decompress it
 result['data'] = gzip.GzipFile(fileobj=StringIO(result['data']])).read()
 if hasattr(f, 'url'):
 result['url'] = f.url
 result['status'] = 200
 if hasattr(f, 'status'):
 result['status'] = f.status
 f.close()
 return result

First, you call the openAnything function with a URL, ETag hash, Last−Modified date, and
User−Agent.

Read the actual data returned from the server. This may be compressed; if so, you'll decompress it later.

Save the ETag hash returned from the server, so the calling application can pass it back to you next time, and
you can pass it on to openAnything, which can stick it in the If−None−Match header and send it to the
remote server.

Save the Last−Modified date too.

If the server says that it sent compressed data, decompress it.

If you got a URL back from the server, save it, and assume that the status code is 200 until you find out
otherwise.

If one of the custom URL handlers captured a status code, then save that too.

Example 11.19. Using openanything.py

>>> import openanything
>>> useragent = 'MyHTTPWebServicesApp/1.0'
>>> url = 'http://diveintopython.org/redir/example301.xml'
>>> params = openanything.fetch(url, agent=useragent)
>>> params
{'url': 'http://diveintomark.org/xml/atom.xml',
'lastmodified': 'Thu, 15 Apr 2004 19:45:21 GMT',
'etag': '"e842a−3e53−55d97640"',
'status': 301,
'data': '<?xml version="1.0" encoding="iso−8859−1"?>
<feed version="0.3"
<−− rest of data omitted for brevity −−>'}
>>> if params['status'] == 301:
... url = params['url']
>>> newparams = openanything.fetch(
... url, params['etag'], params['lastmodified'], useragent)
>>> newparams
{'url': 'http://diveintomark.org/xml/atom.xml',
'lastmodified': None,
'etag': '"e842a−3e53−55d97640"',
'status': 304,

Dive Into Python 166

'data': ''}

The very first time you fetch a resource, you don't have an ETag hash or Last−Modified date, so you'll
leave those out. (They're optional parameters.)

What you get back is a dictionary of several useful headers, the HTTP status code, and the actual data returned
from the server. openanything handles the gzip compression internally; you don't care about that at this
level.

If you ever get a 301

Chapter 12. SOAP Web Services
Chapter 11 focused on document−oriented web services over HTTP. The "input parameter" was the URL, and the
"return value" was an actual XML document which it was your responsibility to parse.

This chapter will focus on SOAP web services, which take a more structured approach. Rather than dealing with
HTTP requests and XML documents directly, SOAP allows you to simulate calling functions that return native data
types. As you will see, the illusion is almost perfect; you can "call" a function through a SOAP library, with the
standard Python calling syntax, and the function appears to return Python objects and values. But under the covers, the
SOAP library has actually performed a complex transaction involving multiple XML documents and a remote server.

SOAP is a complex specification, and it is somewhat misleading to say that SOAP is all about calling remote
functions. Some people would pipe up to add that SOAP allows for one−way asynchronous message passing, and
document−oriented web services. And those people would be correct; SOAP can be used that way, and in many
different ways. But this chapter will focus on so−called "RPC−style" SOAP −− calling a remote function and getting
results back.

12.1. Diving In

You use Google, right? It's a popular search engine. Have you ever wished you could programmatically access Google
search results? Now you can. Here is a program to search Google from Python.

Example 12.1. search.py

from SOAPpy import WSDL

you'll need to configure these two values;
see http://www.google.com/apis/
WSDLFILE = '/path/to/copy/of/GoogleSearch.wsdl'
APIKEY = 'YOUR_GOOGLE_API_KEY'

_server = WSDL.Proxy(WSDLFILE)
def search(q):
 """Search Google and return list of {title, link, description}"""
 results = _server.doGoogleSearch(
 APIKEY, q, 0, 10, False, "", False, "", "utf−8", "utf−8")
 return [{"title": r.title.encode("utf−8"),
 "link": r.URL.encode("utf−8"),
 "description": r.snippet.encode("utf−8")}
 for r in results.resultElements]

if __name__ == '__main__':
 import sys
 for r in search(sys.argv[1])[:5]:
 print r['title']
 print r['link']
 print r['description']
 print

You can import this as a module and use it from a larger program, or you can run the script from the command line.
On the command line, you give the search query as a command−line argument, and it prints out the URL, title, and
description of the top five Google search results.

Here is the sample output for a search for the word "python".

Dive Into Python 168

http://www.xmethods.net/
http://www.w3.org/TR/soap/
http://pyxml.sourceforge.net/

http://www.analytics.washington.edu/statcomp/projects/rzope/fpconst/

Procedure 12.3.

Here is the procedure for installing SOAPpy:

Go to http://pywebsvcs.sourceforge.net/ and select Latest Official Release under the SOAPpy section.1.
There are two downloads available. If you are using Windows, download the .zip file; otherwise, download
the .tar.gz file.

2.

Decompress the downloaded file, just as you did with fpconst.3.
Open a command prompt and navigate to the directory where you decompressed the SOAPpy files.4.
Typepython setup.py install to run the installation program.5.

To verify that you installed SOAPpy correctly, run your Python IDE and check the version number.

Example 12.5. Verifying SOAPpy Installation

>>> import SOAPpy
>>> SOAPpy.__version__
'0.11.4'

This version number should match the version number of the SOAPpy archive you downloaded and installed.

12.3. First Steps with SOAP

The heart of SOAP is the ability to call remote functions. There are a number of public access SOAP servers that
provide simple functions for demonstration purposes.

The most popular public access SOAP server is http://www.xmethods.net/. This example uses a demonstration
function that takes a United States zip code and returns the current temperature in that region.

Example 12.6. Getting the Current Temperature

>>> from SOAPpy import SOAPProxy
>>> url = 'http://services.xmethods.net:80/soap/servlet/rpcrouter'
>>> namespace = 'urn:xmethods−Temperature'
>>> server = SOAPProxy(url, namespace)
>>> server.getTemp('27502')
80.0

You access the remote SOAP server through a proxy class, SOAPProxy. The proxy handles all the internals of
SOAP for you, including creating the XML request document out of the function name and argument list,
sending the request over HTTP to the remote SOAP server, parsing the XML response document, and creating
native Python values to return. You'll see what these XML documents look like in the next section.

Every SOAP service has a URL which handles all the requests. The same URL is used for all function calls.
This particular service only has a single function, but later in this chapter you'll see examples of the Google
API, which has several functions. The service URL is shared by all functions.Each SOAP service also has a
namespace, which is defined by the server and is completely arbitrary. It's simply part of the configuration
required to call SOAP methods. It allows the server to share a single service URL and route requests between
several unrelated services. It's like dividing Python modules into packages.

You're creating the SOAPProxy with the service URL and the service namespace. This doesn't make any
connection to the SOAP server; it simply creates a local Python object.

Dive Into Python 171

http://pywebsvcs.sourceforge.net/
http://www.xmethods.net/

Now with everything configured properly, you can actually call remote SOAP methods as if they were local
functions. You pass arguments just like a normal function, and you get a return value just like a normal
function. But under the covers, there's a heck of a lot going on.

Let's peek under those covers.

12.4. Debugging SOAP Web Services

The SOAP libraries provide an easy way to see what's going on behind the scenes.

Turning on debugging is a simple matter of setting two flags in the SOAPProxy's configuration.

Example 12.7. Debugging SOAP Web Services

>>> from SOAPpy import SOAPProxy
>>> url = 'http://services.xmethods.net:80/soap/servlet/rpcrouter'
>>> n = 'urn:xmethods−Temperature'
>>> server = SOAPProxy(url, namespace=n)
>>> server.config.dumpSOAPOut = 1'27502'(serverDo 6 D5 6 D5 6rgek u
(from*** 63 es prorvice**>>)Tj
(serve<?xml 0 −1SOA="0 c" encod de="UTF−8"?>>>)Tj
(serve<rvic−ENV:Envel Tcre')T−ENV:encod deStyle="OAPProxychemas11 ll = .orgrl = 'encod de/">>)Tj
(serve 1 lns:rvic−ENC="OAPProxychemas11 ll = .orgrl = 'encod de/">>)Tj
(serve 1 lns:xsi="OAPProxwww.w3.orgr1999/XMLSchema−instance">>)Tj
(serve 1 lns:rvic−ENV="OAPProxschemas11 ll = .orgrl = 'envel Tc/">>)Tj
(serve 1 lns:xsd="OAPProxwww.w3.orgr1999/XMLSchema">>>)Tj
(serve<rvic−ENV:Body>>>)Tj
(serve<ns1:jus
0 − 1 lns:ns1="rpcrouter')Tj
0 −11 Td(>"re')T−ENC:root="0">>> serve<v1 xsi:type="xsd:str de">27502</v1>>> serve</ns1:jus
0 −>>> serve</rvic−ENV:Body>>> serve</rvic−ENV:Envel Tc>>> serve**>> serve*** Incom debrvic **>> serve<?xml 0 −1SOA='0 c' encod de='UTF−8'?>>> serve<rvic−ENV:Envel Tcr1 lns:rvic−ENV="OAPProxschemas11 ll = .orgrl = 'envel Tc/">> serve 1 lns:xsi="OAPProxwww.w3.orgr2001/XMLSchema−instance">> serve 1 lns:xsd="OAPProxwww.w3.orgr2001/XMLSchema">>> serve<rvic−ENV:Body>>> serve<ns1:jus
0 −R>>> the 1 lns:ns1="rpcrouter'
>">> serve<ike a nxsi:type="xsd:float">8 Do</ike a >>> serve</ns1:jus
0 −R>>> the>>> serve</rvic−ENV:Envel Tc>>>

document, and the incoming XML response document. This is all the hard work that SOAPProxy is doing for
you. Intimidating, isn't it? Let's break it down.

Most of the XML request document that gets sent to the server is just boilerplate. Ignore all the namespace
declarations; they're going to be the same (or similar) for all SOAP calls. The heart of the "function call" is this
fragment within the <Body> element:

<ns1:getTemp
 xmlns:ns1="urn:xmethods−Temperature"
 SOAP−ENC:root="1">
<v1 xsi:type="xsd:string">27502</v1>
</ns1:getTemp>

The element name is the function name, getTemp. SOAPProxy uses getattr as a dispatcher. Instead of
calling separate local methods based on the method name, it actually uses the method name to construct the
XML request document.

The function's XML element is contained in a specific namespace, which is the namespace you specified when
you created the SOAPProxy object. Don't worry about the SOAP−ENC:root; that's boilerplate too.

The arguments of the function also got translated into XML. SOAPProxy introspects each argument to
determine its datatype (in this case it's a string). The argument datatype goes into the xsi:type attribute,
followed by the actual string value.

The XML return document is equally easy to understand, once you know what to ignore. Focus on this fragment
within the <Body>:

<ns1:getTempResponse
 xmlns:ns1="urn:xmethods−Temperature"
 SOAP−ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<return xsi:type="xsd:float">80.0</return>
</ns1:getTempResponse>

The server wraps the function return value within a <getTempResponse> element. By convention, this
wrapper element is the name of the function, plus Responsefolwhich is wu s −13.2Tj
lgeou created the determine itsn thissi:tyit'snction, plus

The big difference is introspection. As you saw in Chapter 4, Python excels at letting you discover things about
modules and functions at runtime. You can list the available functions within a module, and with a little work, drill
down to individual function declarations and arguments.

WSDL lets you do that with SOAP web services. WSDL stands for "Web Services Description Language". Although
designed to be flexible enough to describe many types of web services, it is most often used to describe SOAP web
services.

A WSDL file is just that: a file. More specifically, it's an XML file. It usually lives on the same server you use to
access the SOAP web services it describes, although there's nothing special about it. Later in this chapter, we'll
download the WSDL file for the Google API and use it locally. That doesn't mean we're calling Google locally; the
WSDL file still describes the remote functions sitting on Google's server.

A WSDL file contains a description of everything involved in calling a SOAP web service:

The service URL and namespace•
The type of web service (probably function calls using SOAP, although as I mentioned, WSDL is flexible
enough to describe a wide variety of web services)

•

The list of available functions•
The arguments for each function•
The datatype of each argument•
The return values of each function, and the datatype of each return value•

In other words, a WSDL file tells you everything you need to know to be able to call a SOAP web service.

12.6. Introspecting SOAP Web Services with WSDL

Like many things in the web services arena, WSDL has a long and checkered history, full of political strife and
intrigue. I will skip over this history entirely, since it bores me to tears. There were other standards that tried to do
similar things, but WSDL won, so let's learn how to use it.

The most fundamental thing that WSDL allows you to do is discover the available methods offered by a SOAP server.

Example 12.8. Discovering The Available Methods

>>> from SOAPpy import WSDL
>>> wsdlFile = 'http://www.xmethods.net/sd/2001/TemperatureService.wsdl')
>>> server = WSDL.Proxy(wsdlFile)
>>> server.methods.keys()
[u'getTemp']

SOAPpy includes a WSDL parser. At the time of this writing, it was labeled as being in the early stages of
development, but I had no problem parsing any of the WSDL files I tried.

To use a WSDL file, you again use a proxy class, WSDL.Proxy, which takes a single argument: the WSDL
file. Note that in this case you are passing in the URL of a WSDL file stored on the remote server, but the proxy
class works just as well with a local copy of the WSDL file. The act of creating the WSDL proxy will download
the WSDL file and parse it, so it there are any errors in the WSDL file (or it can't be fetched due to networking
problems), you'll know about it immediately.

The WSDL proxy class exposes the available functions as a Python dictionary, server.methods. So getting
the list of available methods is as simple as calling the dictionary method keys().

Dive Into Python 174

Okay, so you know that this SOAP server offers a single method: getTemp. But how do you call it? The WSDL
proxy object can tell you that too.

Example 12.9. Discovering A Method's Arguments

>>> callInfo = server.methods['getTemp']
>>> callInfo.inparams
[<SOAPpy.wstools.WSDLTools.ParameterInfo instance at 0x00CF3AD0>]
>>> callInfo.inparams[0].name
u'zipcode'
>>> callInfo.inparams[0].type
(u'http://www.w3.org/2001/XMLSchema', u'string')

The server.methods dictionary is filled with a SOAPpy−specific structure called CallInfo. A
CallInfo object contains information about one specific function, including the function arguments.

The function arguments are stored in callInfo.inparams, which is a Python list of ParameterInfo
objects that hold information about each parameter.

Each ParameterInfo object contains a name attribute, which is the argument name. You are not required to
know the argument name to call the function through SOAP, but SOAP does support calling functions with
named arguments (just like Python), and WSDL.Proxy will correctly handle mapping named arguments to the
remote function if you choose to use them.

Each parameter is also explicitly typed, using datatypes defined in XML Schema. You saw this in the wire trace
in the previous section; the XML Schema namespace was part of the "boilerplate" I told you to ignore. For our
purposes here, you may continue to ignore it. The zipcode parameter is a string, and if you pass in a Python
string to the WSDL.Proxy object, it will map it correctly and send it to the server.

WSDL also lets you introspect into a function's return values.

Example 12.10. Discovering A Method's Return Values

>>> callInfo.outparams
[<SOAPpy.wstools.WSDLTools.ParameterInfo instance at 0x00CF3AF8>]
>>> callInfo.outparams[0].name
u'return'
>>> callInfo.outparams[0].type
(u'http://www.w3.org/2001/XMLSchema', u'float')

The adjunct to callInfo.inparams for function arguments is callInfo.outparams for return value.
It is also a list, because functions called through SOAP can return multiple values, just like Python functions.

Each ParameterInfo object contains name and type. This function returns a single value, named
return, which is a float.

Let's put it all together, and call a SOAP web service through a WSDL proxy.

Example 12.11. Calling A Web Service Through A WSDL Proxy

>>> from SOAPpy import WSDL
>>> wsdlFile = 'http://www.xmethods.net/sd/2001/TemperatureService.wsdl')
>>> server = WSDL.Proxy(wsdlFile)
>>> server.getTemp('90210')
66.0
>>> server.soapproxy.config.dumpSOAPOut = 1
>>> server.soapproxy.config.dumpSOAPIn = 1
>>> temperature = server.getTemp('90210')

Dive Into Python 175

*** Outgoing SOAP **
<?xml version="1.0" encoding="UTF−8"?>
<SOAP−ENV:Envelope SOAP−ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP−ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema−instance"
 xmlns:SOAP−ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema">
<SOAP−ENV:Body>
<ns1:getTemp xmlns:ns1="urn:xmethods−Temperature" SOAP−ENC:root="1">
<v1 xsi:type="xsd:string">90210</v1>
</ns1:getTemp>
</SOAP−ENV:Body>
</SOAP−ENV:Envelope>
**
*** Incoming SOAP **
<?xml version='1.0' encoding='UTF−8'?>
<SOAP−ENV:Envelope xmlns:SOAP−ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema−instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<SOAP−ENV:Body>
<ns1:getTempResponse xmlns:ns1="urn:xmethods−Temperature"
 SOAP−ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<return xsi:type="xsd:float">66.0</return>
</ns1:getTempResponse>

</SOAP−ENV:Body>
</SOAP−ENV:Envelope>
**

>>> temperature
66.0

The configuration is simpler than calling the SOAP service directly, since the WSDL file contains the both
service URL and namespace you need to call the service. Creating the WSDL.Proxy object downloads the
WSDL file, parses it, and configures a SOAPProxy object that it uses to call the actual SOAP web service.

Once the WSDL.Proxy object is created, you can call a function as easily as you did with the SOAPProxy
object. This is not surprising; the WSDL.Proxy is just a wrapper around the SOAPProxy with some
introspection methods added, so the syntax for calling functions is the same.

You can access the WSDL.Proxy's SOAPProxy with server.soapproxy. This is useful to turning on
debugging, so that when you can call functions through the WSDL proxy, its SOAPProxy will dump the
outgoing and incoming XML documents that are going over the wire.

12.7. Searching Google

Let's finally turn to the sample code that you saw that the beginning of this chapter, which does something more useful
and exciting than get the current temperature.

Google provides a SOAP API for programmatically accessing Google search results. To use it, you will need to sign
up for Google Web Services.

Procedure 12.4. Signing Up for Google Web Services

Go to http://www.google.com/apis/ and create a Google account. This requires only an email address. After
you sign up you will receive your Google API license key by email. You will need this key to pass as a
parameter whenever you call Google's search functions.

1.

Also on http://www.google.com/apis/, download the Google Web APIs developer kit. This includes some
sample code in several programming languages (but not Python), and more importantly, it includes the WSDL

2.

Dive Into Python 176

http://www.google.com/apis/
http://www.google.com/apis/

file.
Decompress the developer kit file and find GoogleSearch.wsdl. Copy this file to some permanent
location on your local drive. You will need it later in this chapter.

3.

Once you have your developer key and your Google WSDL file in a known place, you can start poking around with
Google Web Services.

Example 12.12. Introspecting Google Web Services

>>> from SOAPpy import WSDL
>>> server = WSDL.Proxy('/path/to/your/GoogleSearch.wsdl')
>>> server.methods.keys()
[u'doGoogleSearch', u'doGetCachedPage', u'doSpellingSuggestion']
>>> callInfo = server.methods['doGoogleSearch']
>>> for arg in callInfo.inparams:
... print arg.name.ljust(15), arg.type
key (u'http://www.w3.org/2001/XMLSchema', u'string')
q (u'http://www.w3.org/2001/XMLSchema', u'string')
start (u'http://www.w3.org/2001/XMLSchema', u'int')
maxResults (u'http://www.w3.org/2001/XMLSchema', u'int')
filter (u'http://www.w3.org/2001/XMLSchema', u'boolean')
restrict (u'http://www.w3.org/2001/XMLSchema', u'string')
safeSearch (u'http://www.w3.org/2001/XMLSchema', u'boolean')
lr (u'http://www.w3.org/2001/XMLSchema', u'string')
ie (u'http://www.w3.org/2001/XMLSchema', u'string')
oe (u'http://www.w3.org/2001/XMLSchema', u'string')

Getting started with Google web services is easy: just create a WSDL.Proxy object and point it
at your local copy of Google's WSDL file.

According to the WSDL file, Google offers three functions: doGoogleSearch,
doGetCachedPage, and doSpellingSuggestion. These do exactly what they sound
like: perform a Google search and return the results programmatically, get access to the cached
version of a page from the last time Google saw it, and offer spelling suggestions for commonly
misspelled search words.

The doGoogleSearch function takes a number of parameters of various types. Note that
while the WSDL file can tell you what the arguments are called and what datatype they are, it
can't tell you what they mean or how to use them. It could theoretically tell you the acceptable
range of values for each parameter, if only specific values were allowed, but Google's WSDL
file is not that detailed. WSDL.Proxy can't work magic; it can only give you the information
provided in the WSDL file.

Here is a brief synopsis of all the parameters to the doGoogleSearch function:

key − Your Google API key, which you received when you signed up for Google web services.•
q − The search word or phrase you're looking for. The syntax is exactly the same as Google's web form, so if
you know any advanced search syntax or tricks, they all work here as well.

•

start − The index of the result to start on. Like the interactive web version of Google, this function returns
10 results at a time. If you wanted to get the second "page" of results, you would set start to 10.

•

maxResults − The number of results to return. Currently capped at 10, although you can specify fewer if
you are only interested in a few results and want to save a little bandwidth.

•

filter − If True, Google will filter out duplicate pages from the results.•
restrict − Set this to country C7uea=j
/F0 11 Tf 7.81 frtrox.Nt0s't

http://directory.google.com/
http://directory.google.com/

>>> server = WSDL.Proxy(wsdlFile)
>>> temperature = server.getTemp(27502)
<Fault SOAP−ENV:Server: Exception while handling service request:
services.temperature.TempService.getTemp(int) −− no signature match>
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "c:\python23\Lib\site−packages\SOAPpy\Client.py", line 453, in __call__
 return self.__r_call(*args, **kw)
 File "c:\python23\Lib\site−packages\SOAPpy\Client.py", line 475, in __r_call
 self.__hd, self.__ma)
 File "c:\python23\Lib\site−packages\SOAPpy\Client.py", line 389, in __call
 raise p
SOAPpy.Types.faultType: <Fault SOAP−ENV:Server: Exception while handling service request:
services.temperature.TempService.getTemp(int) −− no signature match>

Did you spot the mistake? It's a subtle one: you're calling server.getTemp with an integer instead of a
string. As you saw from introspecting the WSDL file, the getTemp() SOAP function takes a single
argument, zipcode, which must be a string. WSDL.Proxy will not coerce datatypes for you; you need to
pass the exact datatypes that the server expects.

Again, the server returns a SOAP Fault, and the human−readable part of the error gives a clue as to the
problem: you're calling a getTemp function with an integer value, but there is no function defined with that
name that takes an integer. In theory, SOAP allows you to overload functions, so you could have two functions
in the same SOAP service with the same name and the same number of arguments, but the arguments were of
different datatypes. This is why it's important to match the datatypes exactly, and why WSDL.Proxy doesn't
coerce datatypes for you. If it did, you could end up calling a completely different function! Good luck
debugging that one. It's much easier to be picky about datatypes and fail as quickly as possible if you get them
wrong.

It's also possible to write Python code that expects a different number of return values than the remote function
actually returns.

Example 12.17. Calling a Method and Expecting the Wrong Number of Return Values

>>> wsdlFile = 'http://www.xmethods.net/sd/2001/TemperatureService.wsdl'
>>> server y\Client.py", line 453, in __call__

Exg0 0.nc a SOAd(services.temperature.TempService.getTemp(int) −− no signature match>>> 8 −27.572 Td(Did you spot the mistake? Itonfferent nuling 're cala fnamgetn th rg lowou gtenTj
0 −13.2>>>)Tj
ault, af (Tf ned w /F4ch with yoalso pohave ryy retong queseasieeturn yoTj
−27.688varis.)Ts. Nite oerce dargatchust be a)Tj
/F6 11 13.2 Td(prom intrt.pyrver.farr ret to write ttp://wargconc r)Tj,ust hy rew thebout alltiober Td(Agaionff>>>)Tj
ault, aoccurree that Tj
0 −13.2after>>> 8 pcode)

<Fault SOAP−ENV:Server:
 Exception from service object: Invalid authorization key: foo:
 <SOAPpy.Types.structType detail at 14164616>:
 {'stackTrace':
 'com.google.soap.search.GoogleSearchFault: Invalid authorization key: foo
 at com.google.soap.search.QueryLimits.lookUpAndLoadFromINSIfNeedBe(
 QueryLimits.java:220)
 at com.google.soap.search.QueryLimits.validateKey(QueryLimits.java:127)
 at com.google.soap.search.GoogleSearchService.doPublicMethodChecks(
 GoogleSearchService.java:825)
 at com.google.soap.search.GoogleSearchService.doGoogleSearch(
 GoogleSearchService.java:121)
 at sun.reflect.GeneratedMethodAccessor13.invoke(Unknown Source)
 at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
 at java.lang.reflect.Method.invoke(Unknown Source)
 at org.apache.soap.server.RPCRouter.invoke(RPCRouter.java:146)
 at org.apache.soap.providers.RPCJavaProvider.invoke(
 RPCJavaProvider.java:129)
 at org.apache.soap.server.http.RPCRouterServlet.doPost(
 RPCRouterServlet.java:288)
 at javax.servlet.http.HttpServlet.service(HttpServlet.java:760)
 at javax.servlet.http.HttpServlet.service(HttpServlet.java:853)
 at com.google.gse.HttpConnection.runServlet(HttpConnection.java:237)
 at com.google.gse.HttpConnection.run(HttpConnection.java:195)
 at com.google.gse.DispatchQueue$WorkerThread.run(DispatchQueue.java:201)
Caused by: com.google.soap.search.UserKeyInvalidException: Key was of wrong size.
 at com.google.soap.search.UserKey.<init>(UserKey.java:59)

 at com.google.gse.DispatchQueue$WorkerThread.run(DispatchQueue.java:201)
Caused by: com.google.soap.search.UserKeyInvalidException: Key was of wrong size.
 at com.google.soap.search.UserKey.<init>(UserKey.java:59)
 at com.google.soap.search.QueryLimits.lookUpAndLoadFromINSIfNeedBe(
 QueryLimits.java:217)
 ... 14 more
'}>

Can you spot the mistake? There's nothing wrong with the calling syntax, or the number of arguments, or the
datatypes. The problem is application−specific: the first argument is supposed to be my application key, but
foo is not a valid Google key.

The Google server responds with a SOAP Fault and an incredibly long error message, which includes a
complete Java stack trace. Remember that all SOAP errors are signified by SOAP Faults: errors in
configuration, errors in function arguments, and application−specific errors like this. Buried in there
somewhere is the crucial piece of information: Invalid authorization key: foo.

Further Reading on Troubleshooting SOAP

http://www-106.ibm.com/developerworks/webservices/library/ws-pyth17.html

Chapter 13. Unit Testing

13.1. Introduction to Roman numerals

In previous chapters, you "dived in" by immediately looking at code and trying to understand it as quickly as possible.
Now that you have some Python under your belt, you're going to step back and look at the steps that happen before the
code gets written.

In the next few chapters, you're going to write, debug, and optimize a set of utility functions to convert to and from
Roman numerals. You saw the mechanics of constructing and validating Roman numerals in Section 7.3, �Case
Study: Roman Numerals�, but now let's step back and consider what it would take to expand that into a two−way
utility.

The rules for Roman numerals lead to a number of interesting observations:

There is only one correct way to represent a particular number as Roman numerals.1.
The converse is also true: if a string of characters is a valid Roman numeral, it represents only one number
(i.e. it can only be read one way).

2.

There is a limited range of numbers that can be expressed as Roman numerals, specifically 1 through 3999.
(The Romans did have several ways of expressing larger numbers, for instance by having a bar over a numeral
to represent that its normal value should be multiplied by 1000, but you're not going to deal with that. For the
purposes of this chapter, let's stipulate that Roman numerals go from 1 to 3999.)

3.

There is no way to represent 0 in Roman numerals. (Amazingly, the ancient Romans had no concept of 0 as a
number. Numbers were for counting things you had; how can you count what you don't have?)

4.

There is no way to represent negative numbers in Roman numerals.5.
There is no way to represent fractions or non−integer numbers in Roman numerals.6.

Given all of this, what would you expect out of a set of functions to convert to and from Roman numerals?

roman.py requirements

toRoman should return the Roman numeral representation for all integers 1 to 3999.1.
toRoman should fail when given an integer outside the range 1 to 3999.2.
toRoman should fail when given a non−integer number.3.
fromRoman should take a valid Roman numeral and return the number that it represents.4.
fromRoman should fail when given an invalid Roman numeral.5.
If you take a number, convert it to Roman numerals, then convert that back to a number, you should end up
with the number you started with. So fromRoman(toRoman(n)) == n for all n in 1..3999.

6.

toRoman should always return a Roman numeral using uppercase letters.7.
fromRoman should only accept uppercase Roman numerals (i.e. it should fail when given lowercase input).8.

Further reading

This site (http://www.wilkiecollins.demon.co.uk/roman/front.htm) has more on Roman numerals, including a
fascinating history (http://www.wilkiecollins.demon.co.uk/roman/intro.htm) of how Romans and other
civilizations really used them (short answer: haphazardly and inconsistently).

•

Dive Into Python 183

http://www.wilkiecollins.demon.co.uk/roman/front.htm
http://www.wilkiecollins.demon.co.uk/roman/intro.htm

13.2. Diving in

Now that you've completely defined the behavior you expect from your conversion functions, you're going to do
something a little unexpected: you're going to write a test suite that puts these functions through their paces and makes
sure that they behave the way you want them to. You read that right: you're going to write code that tests code that
you haven't written yet.

This is called unit testing, since the set of two conversion functions can be written and tested as a unit, separate from
any larger program they may become part of later. Python has a framework for unit testing, the appropriately−named
unittest module.

unittest is included with Python 2.1 and later. Python 2.0 users can download it from
pyunit.sourceforge.net (http://pyunit.sourceforge.net/).
Unit testing is an important part of an overall testing−centric development strategy. If you write unit tests, it is
important to write them early (preferably before writing the code that they test), and to keep them updated as code and
requirements change. Unit testing is not a replacement for higher−level functional or system testing, but it is important
in all phases of development:

Before writing code, it forces you to detail your requirements in a useful fashion.• • pactorriting code, ased(srces yod thg, tnew conversihe besrcg, tsy−nthe wn hg, told conversion.)Tj
/Fc 11 Tf −7.81 0 Td(·)Tj
/F4 11 Tf sefulustinuWhittmain denriting code, helkrces ycan oail yoase whittTd(sonu've srcscou mritiow that ranyem ters chaant)Tj
0 −13.2 brokince theold ng c.rly"Bu.net
• teet o, ttu m. Td thhe , nobody gomaaoft ooofulr inou to deveriting c o, thhoaveant

• αδψ δονυ∋σοονσ, ερσ χαν δοωνλοοµερχεν αολ, ργεξα χοµτ ισιµπ ε φοραντ

http://pyunit.sourceforge.net/
http://diveintopython.org/download/diveintopython-examples-5.4.zip

class ToRomanBadInput(unittest.TestCase):
 def testTooLarge(self):
 """toRoman should fail with large input"""
 self.assertRaises(roman.OutOfRangeError, roman.toRoman, 4000)

 def testZero(self):
 """toRoman should fail with 0 input"""
 self.assertRaises(roman.OutOfRangeError, roman.toRoman, 0)

 def testNegative(self):
 """toRoman should fail with negative input"""
 self.assertRaises(roman.OutOfRangeError, roman.toRoman, −1)

 def testNonInteger(self):
 """toRoman should fail with non−integer input"""
 self.assertRaises(roman.NotIntegerError, roman.toRoman, 0.5)

class FromRomanBadInput(unittest.TestCase):
 def testTooManyRepeatedNumerals(self):
 """fromRoman should fail with too many repeated numerals"""
 for s in ('MMMM', 'DD', 'CCCC', 'LL', 'XXXX', 'VV', 'IIII'):
 self.assertRaises(roman.InvalidRomanNumeralError, roman.fromRoman, s)

 def testRepeatedPairs(self):
 """fromRoman should fail with repeated pairs of numerals"""
 for s in ('CMCM', 'CDCD', 'XCXC', 'XLXL', 'IXIX', 'IVIV'):
 self.assertRaises(roman.InvalidRomanNumeralError, roman.fromRoman, s)

 def testMalformedAntecedent(self):
 """fromRoman should fail with malformed antecedents"""
 for s in ('IIMXCC', 'VX', 'DCM', 'CMM', 'IXIV',
 'MCMC', 'XCX', 'IVI', 'LM', 'LD', 'LC'):
 self.assertRaises(roman.InvalidRomanNumeralError, roman.fromRoman, s)

class SanityCheck(unittest.TestCase):
 def testSanity(self):
 """fromRoman(toRoman(n))==n for all n"""
 for integer in range(1, 4000):
 numeral = roman.toRoman(integer)
 result = roman.fromRoman(numeral)
 self.assertEqual(integer, result)

class CaseCheck(unittest.TestCase):
 def testToRomanCase(self):
 """toRoman should always return uppercase"""
 for integer in range(1, 4000):
 numeral = roman.toRoman(integer)
 self.assertEqual(numeral, numeral.upper())

 def testFromRomanCase(self):
 """fromRoman should only accept uppercase input"""
 for integer in range(1, 4000):
 numeral = roman.toRoman(integer)
 roman.fromRoman(numeral.upper())
 self.assertRaises(roman.InvalidRomanNumeralError,
 roman.fromRoman, numeral.lower())

if __name__ == "__main__":
 unittest.main()

Further reading

Dive Into Python 186

The PyUnit home page (http://pyunit.sourceforge.net/) has an in−depth discussion of using the unittest
framework (http://pyunit.sourceforge.net/pyunit.html), including advanced features not covered in this
chapter.

•

The PyUnit FAQ (http://pyunit.sourceforge.net/pyunit.html) explains why test cases are stored separately
(http://pyunit.sourceforge.net/pyunit.html#WHERE) from the code they test.

•

Python Library Reference (http://www.python.org/doc/current/lib/) summarizes the unittest
(http://www.python.org/doc/current/lib/module−unittest.html) module.

•

http://pyunit.sourceforge.net/
http://pyunit.sourceforge.net/pyunit.html
http://pyunit.sourceforge.net/pyunit.html
http://pyunit.sourceforge.net/pyunit.html#WHERE
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-unittest.html
http://www.extremeprogramming.org/
http://www.extremeprogramming.org/rules/unittests.html
http://www.c2.com/cgi/wiki
http://www.c2.com/cgi/wiki?UnitTests
http://www.c2.com/cgi/wiki?StandardDefinitionOfUnitTest
http://www.c2.com/cgi/wiki?CodeUnitTestFirst
http://www.c2.com/cgi/wiki?UnitTestTrial

Assuming the toRoman function was defined correctly, called correctly, completed successfully, and returned
a value, the last step is to check whether it returned the right value. This is a common question, and the
TestCase class provides a method, assertEqual, to check whether two values are equal. If the result
returned from toRoman (result) does not match the known value you were expecting (numeral),
assertEqual will raise an exception and the test will fail. If the two values are equal, assertEqual will
do nothing. If every value returned from toRoman matches the known value you expect, assertEqual
never raises an exception, so testToRomanKnownValues eventually exits normally, which means
toRoman has passed this test.

13.5. Testing for failure

It is not enough to test that functions succeed when given good input; you must also test that they fail when given bad
input. And not just any sort of failure; they must fail in the way you expect.

Remember the other requirements for toRoman:

toRoman should fail when given an integer outside the range 1 to 3999.2.
toRoman should fail when given a non−integer number.3.

In Python, functions indicate failure by raising exceptions, and the unittest module provides methods for testing
whether a function raises a particular exception when given bad input.

Example 13.3. Testing bad input to toRoman

class ToRomanBadInput(unittest.TestCase):
 def testTooLarge(self):
 """toRoman should fail with large input"""
 self.assertRaises(roman.OutOfRangeError, roman.toRoman, 4000)

 def testZero(self):
 """toRoman should fail with 0 input"""
 self.assertRaises(roman.OutOfRangeError, roman.toRoman, 0)

 def testNegative(self):
 """toRoman should fail with negative input"""
 self.assertRaises(roman.OutOfRangeError, roman.toRoman, −1)

 def testNonInteger(self):
 """toRoman should fail with non−integer input"""
 self.assertRaises(roman.NotIntegerError, roman.toRoman, 0.5)

The TestCase class of the unittest provides the assertRaises method, which takes
the following arguments: the exception you're expecting, the function you're testing, and the
arguments you're passing that function. (If the function you're testing takes more than one
argument, pass them all to assertRaises, in order, and it will pass them right along to the
function you're testing.) Pay close attention to what you're doing here: instead of calling
toRoman directly and manually checking that it raises a particular exception (by wrapping it in
a try...except block), assertRaises has encapsulated all of that for us. All you do is
give it the exception (roman.OutOfRangeError), the function (toRoman), and
toRoman's arguments (4000), and assertRaises takes care of calling toRoman and
checking to make sure that it raises roman.OutOfRangeError. (Also note that you're
passing the toRoman function itself as an argument; you're not calling it, and you're not
passing the name of it as a string. Have I mentioned recently how handy it is that everything in
Python is an object, including functions and exceptions?)

Dive Into Python 189

Along with testing numbers that are too large, you need to test numbers that are too small.
Remember, Roman numerals cannot express 0 or negative numbers, so you have a test case for
each of those (testZero and testNegative). In testZero, you are testing that
toRoman raises a roman.OutOfRangeError exception when called with 0; if it does not
raise a roman.OutOfRangeError (either because it returns an actual value, or because it
raises some other exception), this test is considered failed.

Requirement #3 specifies that toRoman cannot accept a non−integer number, so here you test
to make sure that toRoman raises a roman.NotIntegerError exception when called
with 0.5. If toRoman does not raise a roman.NotIntegerError, this test is considered
failed.

The next two requirements are similar to the first three, except they apply to fromRoman instead of toRoman:

fromRoman should take a valid Roman numeral and return the number that it represents.4.
fromRoman should fail when given an invalid Roman numeral.5.

Requirement #4 is handled in the same way as requirement #1, iterating through a sampling of known values and
testing each in turn. Requirement #5 is handled in the same way as requirements #2 and #3, by testing a series of bad
inputs and making sure fromRoman raises the appropriate exception.

Example 13.4. Testing bad input to fromRoman

class FromRomanBadInput(unittest.TestCase):
 def testTooManyRepeatedNumerals(self):
 """fromRoman should fail with too many repeated numerals"""
 for s in ('MMMM', 'DD', 'CCCC', 'LL', 'XXXX', 'VV', 'IIII'):
 self.assertRaises(roman.InvalidRomanNumeralError, roman.fromRoman, s)

 def testRepeatedPairs(self):
 """fromRoman should fail with repeated pairs of numerals"""
 for s in ('CMCM', 'CDCD', 'XCXC', 'XLXL', 'IXIX', 'IVIV'):
 self.assertRaises(roman.InvalidRomanNumeralError, roman.fromRoman, s)

 def testMalformedAntecedent(self):
 """fromRoman should fail with malformed antecedents"""
 for s in ('IIMXCC', 'VX', 'DCM', 'CMM', 'IXIV',
 'MCMC', 'XCX', 'IVI', 'LM', 'LD', 'LC'):
 self.assertRaises(roman.InvalidRomanNumeralError, roman.fromRoman, s)

Not much new to say about these; the pattern is exactly the same as the one you used to test bad input to
toRoman. I will briefly note that you have another exception: roman.InvalidRomanNumeralError.
That makes a total of three custom exceptions that will need to be defined in roman.py (along with
roman.OutOfRangeError and roman.NotIntegerError). You'll see how to define these custom
exceptions when you actually start writing roman.py, later in this chapter.

13.6. Testing for sanity

Often, you will find that a unit of code contains a set of reciprocal functions, usually in the form of conversion
functions where one converts A to B and the other converts B to A. In these cases, it is useful to create a "sanity

If you take a number, convert it to Roman numerals, then convert that back to a number, you should end up
with the number you started with. So fromRoman(toRoman(n)) == n for all n in 1..3999.

6.

Example 13.5. Testing toRoman against fromRoman

class SanityCheck(unittest.TestCase):
 def testSanity(self):
 """fromRoman(toRoman(n))==n for all n"""
 for integer in range(1, 4000):
 numeral = roman.toRoman(integer)
 result = roman.fromRoman(numeral)
 self.assertEqual(integer, result)

You've seen the range function before, but here it is called with two arguments, which returns a list
of integers starting at the first argument (1) and counting consecutively up to but not including the
second argument (4000). Thus, 1..3999, which is the valid range for converting to Roman
numerals.

I just wanted to mention in passing that integer is not a keyword in Python; here it's just a variable
name like any other.

The actual testing logic here is straightforward: take a number (integer), convert it to a Roman
numeral (numeral), then convert it back to a number (result) and make sure you end up with the
same number you started with. If not, assertEqual will raise an exception and the test will
immediately be considered failed. If all the numbers match, assertEqual will always return
silently, the entire testSanity method will eventually return silently, and the test will be considered
passed.

The last two requirements are different from the others because they seem both arbitrary and trivial:

toRoman should always return a Roman numeral using uppercase letters.7.
fromRoman should only accept uppercase Roman numerals (i.e. it should fail when given lowercase input).8.

In fact, they are somewhat arbitrary. You could, for instance, have stipulated that fromRoman accept lowercase and
mixed case input. But they are not completely arbitrary; if toRoman is always returning uppercase output, then
fromRoman must at least accept uppercase input, or the "sanity check" (requirement #6) would fail. The fact that it
only accepts uppercase input is arbitrary, but as any systems integrator will tell you, case always matters, so it's worth
specifying the behavior up front. And if it's worth specifying, it's worth testing.

Example 13.6. Testing for case

Chapter 14. Test−First Programming

14.1. roman.py, stage 1

Now that the unit tests are complete, it's time to start writing the code that the test cases are attempting to test. You're
going to do this in stages, so you can see all the unit tests fail, then watch them pass one by one as you fill in the gaps
in roman.py.

Example 14.1. roman1.py

This file is available in py/roman/stage1/ in the examples directory.

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython−examples−5.4.zip) used in this book.

"""Convert to and from Roman numerals"""

#Define exceptions
class RomanError(Exception): pass
class OutOfRangeError(RomanError): pass
class NotIntegerError(RomanError): pass
class InvalidRomanNumeralError(RomanError): pass

def toRoman(n):
 """convert integer to Roman numeral"""
 pass

def fromRoman(s):
 """convert Roman numeral to integer"""
 pass

This is how you define your own custom exceptions in Python. Exceptions are classes, and
you create your own by subclassing existing exceptions. It is strongly recommended (but not
required) that you subclass Exception, which is the base class that all built−in exceptions
inherit from. Here I am defining RomanError (inherited from Exception) to act as the
base class for all my other custom exceptions to follow. This is a matter of style; I could just
as easily have inherited each individual exception from the Exception class directly.

The OutOfRangeError and NotIntegerError exceptions will eventually be used by
toRoman to flag various forms of invalid input, as specified in ToRomanBadInput.

The InvalidRomanNumeralError exception will eventually be used by fromRoman
to flag invalid input, as specified in FromRomanBadInput.

At this stage, you want to define the API of each of your functions, but you don't want to
code them yet, so you stub them out using the Python reserved word pass.

Now for the big moment (drum roll please): you're finally going to run the unit test against this stubby little module.
At this point, every test case should fail. In fact, if any test case passes in stage 1, you should go back to
romantest.py and re−evaluate why you coded a test so useless that it passes with do−nothing functions.

Run romantest1.py with the −v command−line option, which will give more verbose output so you can see
exactly what's going on as each test case runs. With any luck, your output should look like this:

Example 14.2. Output of romantest1.py against roman1.py

Dive Into Python 193

http://diveintopython.org/download/diveintopython-examples-5.4.zip

fromRoman should only accept uppercase input ... ERROR
toRoman should always return uppercase ... ERROR
fromRoman should fail with malformed antecedents ... FAIL
fromRoman should fail with repeated pairs of numerals ... FAIL
fromRoman should fail with too many repeated numerals ... FAIL
fromRoman should give known result with known input ... FAIL
toRoman should give known result with known input ... FAIL
fromRoman(toRoman(n))==n for all n ... FAIL
toRoman should fail with non−integer input ... FAIL
toRoman should fail with negative input ... FAIL
toRoman should fail with large input ... FAIL
toRoman should fail with 0 input ... FAIL

==
ERROR: fromRoman should only accept uppercase input
−−
Traceback (most recent call last):
 File "C:\docbook\dip\py\roman\stage1\romantest1.py", line 154, in testFromRomanCase
 roman1.fromRoman(numeral.upper())
AttributeError: 'None' object has no attribute 'upper'
==
ERROR: toRoman should always return uppercase
−−
Traceback (most recent call last):
 File "C:\docbook\dip\py\roman\stage1\romantest1.py", line 148, in testToRomanCase
 self.assertEqual(numeral, numeral.upper())
AttributeError: 'None' object has no attribute 'upper'
==
FAIL: fromRoman should fail with malformed antecedents
−−
Traceback (most recent call last):
 File "C:\docbook\dip\py\roman\stage1\romantest1.py", line 133, in testMalformedAntecedent
 self.assertRaises(roman1.InvalidRomanNumeralError, roman1.fromRoman, s)
 File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
 raise self.failureException, excName
AssertionError: InvalidRomanNumeralError
==
FAIL: fromRoman should fail with repeated pairs of numerals
−−
Traceback (most recent call last):
 File "C:\docbook\dip\py\roman\stage1\romantest1.py", line 127, in testRepeatedPairs
 self.assertRaises(roman1.InvalidRomanNumeralError, roman1.fromRoman, s)
 File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
 raise self.failureException, excName
AssertionError: InvalidRomanNumeralError
==
FAIL: fromRoman should fail with too many repeated numerals
−−
Traceback (most recent call last):
 File "C:\docbook\dip\py\roman\stage1\romantest1.py", line 122, in testTooManyRepeatedNumerals
 self.assertRaises(roman1.InvalidRomanNumeralError, roman1.fromRoman, s)
 File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
 raise self.failureException, excName
AssertionError: InvalidRomanNumeralError
==
FAIL: fromRoman should give known result with known input
−−
Traceback (most recent call last):
 File "C:\docbook\dip\py\roman\stage1\romantest1.py", line 99, in testFromRomanKnownValues
 self.assertEqual(integer, result)
 File "c:\python21\lib\unittest.py", line 273, in failUnlessEqual
 raise self.failureException, (msg or '%s != %s' % (first, second))
AssertionError: 1 != None

Dive Into Python 194

For each failed test case, unittest displays the trace information showing exactly what happened. In this
case, the call to assertRaises (also called failUnlessRaises) raised an AssertionError because
it was expecting toRoman to raise an OutOfRangeError and it didn't.

After the detail, unittest displays a summary of how many tests were performed and how long it took.

Overall, the unit test failed because at least one test case did not pass. When a test case doesn't pass,
unittest distinguishes between failures and errors. A failure is a call to an assertXYZ method, like
assertEqual or assertRaises, that fails because the asserted condition is not true or the expected
exception was not raised. An error is any other sort of exception raised in the code you're testing or the unit test
case itself. For instance, the testFromRomanCase method ("fromRoman should only accept uppercase
input") was an error, because the call to numeral.upper() raised an AttributeError exception,
because toRoman was supposed to return a string but didn't. But testZero ("toRoman should fail with 0
input") was a failure, because the call to fromRoman did not raise the InvalidRomanNumeral exception
that assertRaises was looking for.

14.2. roman.py, stage 2

Now that you have the framework of the roman module laid out, it's time to start writing code and passing test cases.

Example 14.3. roman2.py

This file is available in py/roman/stage2/ in the examples directory.

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython−examples−5.4.zip) used in this book.

"""Convert to and from Roman numerals"""

#Define exceptions
class RomanError(Exception): pass
class OutOfRangeError(RomanError): pass
class NotIntegerError(RomanError): pass
class InvalidRomanNumeralError(RomanError): pass

#Define digit mapping
romanNumeralMap = (('M', 1000),
 ('CM', 900),
 ('D', 500),
 ('CD', 400),
 ('C', 100),
 ('XC', 90),
Example,wntopython.org/download/diveintopython−exarMfthis book.

http://diveintopython.org/download/diveintopython-examples-5.4.zip

def fromRoman(s):
 """convert Roman numeral to integer"""
 pass

romanNumeralMap is a tuple of tuples which defines three things:

The character representations of the most basic Roman numerals. Note that this is not just the
single−character Roman numerals; you're also defining two−character pairs like CM ("one hundred less
than one thousand"); this will make the toRoman code simpler later.

1.

The order of the Roman numerals. They are listed in descending value order, from M all the way down
to I.

2.

The value of each Roman numeral. Each inner tuple is a pair of (numeral, value).3.

Here's where your rich data structure pays off, because you don't need any special logic to handle the
subtraction rule. To convert to Roman numerals, you simply iterate through romanNumeralMap looking for
the largest integer value less than or equal to the input. Once found, you add the Roman numeral representation
to the end of the output, subtract the corresponding integer value from the input, lather, rinse, repeat.

Example 14.4. How toRoman works

If you're not clear how toRoman works, add a print statement to the end of the while loop:

 while n >= integer:
 result += numeral
 n −= integer
 print 'subtracting', integer, 'from input, adding', numeral, 'to output'

>>> import roman2
>>> roman2.toRoman(1424)
subtracting 1000 from input, adding M to output
subtracting 400 from input, adding CD to output
subtracting 10 from input, adding X to output
subtracting 10 from input, adding X to output
subtracting 4 from input, adding IV to output
'MCDXXIV'

So toRoman appears to work, at least in this manual spot check. But will it pass the unit testing? Well no, not
entirely.

Example 14.5. Output of romantest2.py against roman2.py

Remember to run romantest2.py with the −v command−line flag to enable verbose mode.

fromRoman should only accept uppercase input ... FAIL
toRoman should always return uppercase ... ok
fromRoman should fail with malformed antecedents ... FAIL
fromRoman should fail with repeated pairs of numerals ... FAIL
fromRoman should fail with too many repeated numerals ... FAIL
fromRoman should give known result with known input ... FAIL
toRoman should give known result with known input ... ok
fromRoman(toRoman(n))==n for all n ... FAIL
toRoman should fail with non−integer input ... FAIL
toRoman should fail with negative input ... FAIL
toRoman should fail with large input ... FAIL
toRoman should fail with 0 input ... FAIL

Dive Into Python 197

toRoman does, in fact, always return uppercase, because romanNumeralMap defines the Roman numeral
representations as uppercase. So this test passes already.

Here's the big news: this version of the toRoman function passes the known values test. Remember, it's not
comprehensive, but it does put the function through its paces with a variety of good inputs, including inputs that
produce every single−character Roman numeral, the largest possible input (3999), and the input that produces
the longest possible Roman numeral (3888). At this point, you can be reasonably confident that the function
works for any good input value you could throw at it.

However, the function does not "work" for bad values; it fails every single bad input test. That makes sense,
because you didn't include any checks for bad input. Those test cases look for specific exceptions to be raised
(via assertRaises), and you're never raising them. You'll do that in the next stage.

Here's the rest of the output of the unit test, listing the details of all the failures. You're down to 10.

==
FAIL: fromRoman should only accept uppercase input
−−
Traceback (most recent call last):
 File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 156, in testFromRomanCase
 roman2.fromRoman, numeral.lower())
 File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
 raise self.failureException, excName
AssertionError: InvalidRomanNumeralError
==
FAIL: fromRoman should fail with malformed antecedents
−−
Traceback (most recent call last):
 File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 133, in testMalformedAntecedent
 self.assertRaises(roman2.InvalidRomanNumeralError, roman2.fromRoman, s)
 File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
 raise self.failureException, excName
AssertionError: InvalidRomanNumeralError
==
FAIL: fromRoman should fail with repeated pairs of numerals
−−
Traceback (most recent call last):
 File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 127, in testRepeatedPairs
 self.assertRaises(roman2.InvalidRomanNumeralError, roman2.fromRoman, s)
 File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
 raise self.failureException, excName
AssertionError: InvalidRomanNumeralError
==
FAIL: fromRoman should fail with too many repeated numerals
−−
Traceback (most recent call last):
 File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 122, in testTooManyRepeatedNumerals
 self.assertRaises(roman2.InvalidRomanNumeralError, roman2.fromRoman, s)
 File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
 raise self.failureException, excName
AssertionError: InvalidRomanNumeralError
==
FAIL: fromRoman should give known result with known input
−−
Traceback (most recent call last):
 File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 99, in testFromRomanKnownValues
 self.assertEqual(integer, result)
 File "c:\python21\lib\unittest.py", line 273, in failUnlessEqual
 raise self.failureException, (msg or '%s != %s' % (first, second))
AssertionError: 1 != None
==
FAIL: fromRoman(toRoman(n))==n for all n
−−

Dive Into Python 198

Traceback (most recent call last):
 File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 141, in testSanity
 self.assertEqual(integer, result)
 File "c:\python21\lib\unittest.py", line 273, in failUnlessEqual
 raise self.failureException, (msg or '%s != %s' % (first, second))
AssertionError: 1 != None
==
FAIL: toRoman should fail with non−integer input
−−
Traceback (most recent call last):
 File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 116, in testNonInteger
 self.assertRaises(roman2.NotIntegerError, roman2.toRoman, 0.5)
 File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
 raise self.failureException, excName
AssertionError: NotIntegerError
==
FAIL: toRoman should fail with negative input
−−
Traceback (most recent call last):
 File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 112, in testNegative
 self.assertRaises(roman2.OutOfRangeError, roman2.toRoman, −1)
 File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
 raise self.failureException, excName
AssertionError: OutOfRangeError
==
FAIL: toRoman should fail with large input
−−
Traceback (most recent call last):
 File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 104, in testTooLarge
 self.assertRaises(roman2.OutOfRangeError, roman2.toRoman, 4000)
 File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
 raise self.failureException, excName
AssertionError: OutOfRangeError
==
FAIL: toRoman should fail with 0 input
−−
Traceback (most recent call last):
 File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 108, in testZero
 self.assertRaises(roman2.OutOfRangeError, roman2.toRoman, 0)
 File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
 raise self.failureException, excName
AssertionError: OutOfRangeError
−−
Ran 12 tests in 0.320s

FAILED (failures=10)

14.3. roman.py, stage 3

Now that toRoman behaves correctly with good input (integers from 1 to 3999), it's time to make it behave
correctly with bad input (everything else).

Example 14.6. roman3.py

This file is available in py/roman/stage3/ in the examples directory.

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython−examples−5.4.zip) used in this book.

Dive Into Python 199

http://diveintopython.org/download/diveintopython-examples-5.4.zip

"""Convert to and from Roman numerals"""

#Define exceptions
class RomanError(Exception): pass
class OutOfRangeError(RomanError): pass
class NotIntegerError(RomanError): pass
class InvalidRomanNumeralError(RomanError): pass

#Define digit mapping
romanNumeralMap = (('M', 1000),
 ('CM', 900),
 ('D', 500),
 ('CD', 400),
 ('C', 100),
 ('XC', 90),
 ('L', 50),
 ('XL', 40),
 ('X', 10),
 ('IX', 9),
 ('V', 5),
 ('IV', 4),
 ('I', 1))

def toRoman(n):
 """convert integer to Roman numeral"""
 if not (0 < n < 4000):
 raise OutOfRangeError, "number out of range (must be 1..3999)"
 if int(n) <> n:
 raise NotIntegerError, "non−integers can not be converted"

 result = ""
 for numeral, integer in romanNumeralMap:
 while n >= integer:
 result += numeral
 n −= integer
 return result

def fromRoman(s):
 """convert Roman numeral to integer"""
 pass

This is a nice Pythonic shortcut: multiple comparisons at once. This is equivalent to if not ((0 < n)
and (n < 4000)), but it's much easier to read. This is the range check, and it should catch inputs that are
too large, negative, or zero.

You raise exceptions yourself with the raise statement. You can raise any of the built−in exceptions, or you
can raise any of your custom exceptions that you've defined. The second parameter, the error message, is
optional; if given, it is displayed in the traceback that is printed if the exception is never handled.

This is the non−integer check. Non−integers can not be converted to Roman numerals.

The rest of the function is unchanged.

Example 14.7. Watching toRoman handle bad input

>>> import roman3
>>> roman3.toRoman(4000)
Traceback (most recent call last):
 File "<interactive input>", line 1, in ?
 File "roman3.py", line 27, in toRoman
 raise OutOfRangeError, "number out of range (must be 1..3999)"
OutOfRangeError: number out of range (must be 1..3999)
>>> roman3.toRoman(1.5)

Dive Into Python 200

Traceback (most recent call last):
 File "<interactive input>", line 1, in ?
 File "roman3.py", line 29, in toRoman
 raise NotIntegerError, "non−integers can not be converted"
NotIntegerError: non−integers can not be converted

Example 14.8. Output of romantest3.py against roman3.py

fromRoman should only accept uppercase input ... FAIL
toRoman should always return uppercase ... ok
fromRoman should fail with malformed antecedents ... FAIL
fromRoman should fail with repeated pairs of numerals ... FAIL
fromRoman should fail with too many repeated numerals ... FAIL
fromRoman should give known result with known input ... FAIL
toRoman should give known result with known input ... ok
fromRoman(toRoman(n))==n for all n ... FAIL
toRoman should fail with non−integer input ... ok
toRoman should fail with negative input ... ok
toRoman should fail with large input ... ok
toRoman should fail with 0 input ... ok

toRoman still passes the known values test, which is comforting. All the tests that passed in stage 2 still pass,
so the latest code hasn't broken anything.

More exciting is the fact that all of the bad input tests now pass. This test, testNonInteger, passes because
of the int(n) <> n check. When a non−integer is passed to toRoman, the int(n) <> n check notices it
and raises the NotIntegerError exception, which is what testNonInteger is looking for.

This test, testNegative, passes because of the not (0 < n < 4000) check, which raises an
OutOfRangeError exception, which is what testNegative is looking for.

==
FAIL: fromRoman should only accept uppercase input
−−
Traceback (most recent call last):

http://diveintopython.org/download/diveintopython-examples-5.4.zip

#Define digit mapping
romanNumeralMap = (('M', 1000),
 ('CM', 900),
 ('D', 500),
 ('CD', 400),
 ('C', 100),
 ('XC', 90),
 ('L', 50),
 ('XL', 40),
 ('X', 10),
 ('IX', 9),
 ('V', 5),
 ('IV', 4),
 ('I', 1))

toRoman function omitted for clarity (it hasn't changed)

def fromRoman(s):
 """convert Roman numeral to integer"""
 result = 0
 index = 0
 for numeral, integer in romanNumeralMap:
 while s[index:index+len(numeral)] == numeral:
 result += integer
 index += len(numeral)
 return result

The pattern here is the same as toRoman. You iterate through your Roman numeral data structure (a tuple of
tuples), and instead of matching the highest integer values as often as possible, you match the "highest" Roman
numeral character strings as often as possible.

Example 14.10. How fromRoman works

If you're not clear how fromRoman works, add a print statement to the end of the while loop:

 while s[index:index+len(numeral)] == numeral:
 result += integer
 index += len(numeral)
 print 'found', numeral, 'of length', len(numeral), ', adding', integer

>>> import roman4
>>> roman4.fromRoman('MCMLXXII')
found M , of length 1, adding 1000
found CM , of length 2, adding 900
found L , of length 1, adding 50
found X , of length 1, adding 10
found X , of length 1, adding 10
found I , of length 1, adding 1
found I , of length 1, adding 1
1972

Example 14.11. Output of romantest4.py against roman4.py

fromRoman should only accept uppercase input ... FAIL
toRoman should always return uppercase ... ok
fromRoman should fail with malformed antecedents ... FAIL
fromRoman should fail with repeated pairs of numerals ... FAIL
fromRoman should fail with too many repeated numerals ... FAIL
fromRoman should give known result with known input ... ok

Dive Into Python 203

toRoman should give known result with known input ... ok
fromRoman(toRoman(n))==n for all n ... ok
toRoman should fail with non−integer input ... ok
toRoman should fail with negative input ... ok
toRoman should fail with large input ... ok
toRoman should fail with 0 input ... ok

Two pieces of exciting news here. The first is that fromRoman works for good input, at least for all the known
values you test.

The second is that the sanity check also passed. Combined with the known values tests, you can be reasonably
sure that both toRoman and fromRoman work properly for all possible good values. (This is not guaranteed;
it is theoretically possible that toRoman has a bug that produces the wrong Roman numeral for some
particular set of inputs, and that fromRoman has a reciprocal bug that produces the same wrong integer values
for exactly that set of Roman numerals that toRoman generated incorrectly. Depending on your application
and your requirements, this possibility may bother you; if so, write more comprehensive test cases until it
doesn't bother you.)

==
FAIL: fromRoman should only accept uppercase input
−−
Traceback (most recent call last):
 File "C:\docbook\dip\py\roman\stage4\romantest4.py", line 156, in testFromRomanCase
 roman4.fromRoman, numeral.lower())
 File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
 raise self.failureException, excName
AssertionError: InvalidRomanNumeralError
==
FAIL: fromRoman should fail with malformed antecedents
−−
Traceback (most recent call last):
 File "C:\docbook\dip\py\roman\stage4\romantest4.py", line 133, in testMalformedAntecedent
 self.assertRaises(roman4.InvalidRomanNumeralError, roman4.fromRoman, s)
 File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
 raise self.failureException, excName
AssertionError: InvalidRomanNumeralError
==
FAIL: fromRoman should fail with repeated pairs of numerals
−−
Traceback (most recent call last):
 File "C:\docbook\dip\py\roman\stage4\romantest4.py", line 127, in testRepeatedPairs
 self.assertRaises(roman4.InvalidRomanNumeralError, roman4.fromRoman, s)
 File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
 raise self.failureException, excName
AssertionError: InvalidRomanNumeralError
==
FAIL: fromRoman should fail with too many repeated numerals
−−
Traceback (most recent call last):
 File "C:\docbook\dip\py\roman\stage4\romantest4.py", line 122, in testTooManyRepeatedNumerals
 self.assertRaises(roman4.InvalidRomanNumeralError, roman4.fromRoman, s)
 File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
 raise self.failureException, excName
AssertionError: InvalidRomanNumeralError
−−
Ran 12 tests in 1.222s

FAILED (failures=4)

Dive Into Python 204

14.5. roman.py, stage 5

Now that fromRoman works properly with good input, it's time to fit in the last piece of the puzzle: making it work
properly with bad input. That means finding a way to look at a string and determine if it's a valid Roman numeral.
This is inherently more difficult than validating numeric input in toRoman, but you have a powerful tool at your
disposal: regular expressions.

If you're not familiar with regular expressions and didn't read Chapter 7, Regular Expressions, now would be a good
time.

As you saw in Section 7.3, �Case Study: Roman Numerals�, there are several simple rules for constructing a Roman
numeral, using the letters M, D, C, L, X, V, and I. Let's review the rules:

Characters are additive. I is 1, II is 2, and III is 3. VI is 6 (literally, "5 and 1"), VII is 7, and VIII is 8.1.
The tens characters (I, X, C, and M) can be repeated up to three times. At 4, you need to subtract from the next
highest fives character. You can't represent 4 as IIII; instead, it is represented as IV ("1 less than 5"). 40 is
written as XL ("10 less than 50"), 41 as XLI, 42 as XLII, 43 as XLIII, and then 44 as XLIV ("10 less
than 50, then 1 less than 5").

2.

Similarly, at 9, you need to subtract from the next highest tens character: 8 is VIII, but 9 is IX ("1 less than
10"), not VIIII (since the I character can not be repeated four times). 90 is XC, 900 is CM.

3.

The fives characters can not be repeated. 10 is always represented as X, never as VV. 100 is always C, never
LL.

4.

Roman numerals are always written highest to lowest, and read left to right, so order of characters matters
very much. DC is 600; CD is a completely different number (400, "100 less than 500"). CI is 101; IC is
not even a valid Roman numeral (because you can't subtract 1 directly from 100; you would need to write it
as XCIX, "10 less than 100, then 1 less than 10").

5.

Example 14.12. roman5.py

This file is available in py/roman/stage5/ in the examples directory.

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython−examples−5.4.zip) used in this book.

"""Convert to and from Roman numerals"""
import re

#Define exceptions
class RomanError(Exception): pass
class OutOfRangeError(RomanError): pass
class NotIntegerError(RomanError): pass
class InvalidRomanNumeralError(RomanError): pass

#Define digit mapping
romanNumeralMap = (('M', 1000),
 ('CM', 900),
 ('D', 500),
 ('CD', 400),
 ('C', 100),
 ('XC', 90),
 ('L', 50),
 ('XL', 40),
 ('X', 10),
 ('IX', 9),
 ('V', 5),

Dive Into Python 205

http://diveintopython.org/download/diveintopython-examples-5.4.zip

OK

Chapter 15. Refactoring

15.1. Handling bugs

Despite your best efforts to write comprehensive unit tests, bugs happen. What do I mean by "bug"? A bug is a test
case you haven't written yet.

Example 15.1. The bug

>>> import roman5
>>> roman5.fromRoman("")
0

Remember in the previous section when you kept seeing that an empty string would match
the regular expression you were using to check for valid Roman numerals? Well, it turns out
that this is still true for the final version of the regular expression. And that's a bug; you want
an empty string to raise an InvalidRomanNumeralError exception just like any other
sequence of characters that don't represent a valid Roman numeral.

After reproducing the bug, and before fixing it, you should write a test case that fails, thus illustrating the bug.

Example 15.2. Testing for the bug (romantest61.py)

class FromRomanBadInput(unittest.TestCase):

 # previous test cases omitted for clarity (they haven't changed)

 def testBlank(self):
 """fromRoman should fail with blank string"""
 self.assertRaises(roman.InvalidRomanNumeralError, roman.fromRoman, "")

Pretty simple stuff here. Call fromRoman with an empty string and make sure it raises an
InvalidRomanNumeralError exception. The hard part was finding the bug; now that you know about it,
testing for it is the easy part.

Since your code has a bug, and you now have a test case that tests this bug, the test case will fail:

Example 15.3. Output of romantest61.py against roman61.py

fromRoman should only accept uppercase input ... ok
toRoman should always return uppercase ... ok
fromRoman should fail with blank string ... FAIL
fromRoman should fail with malformed antecedents ... ok
fromRoman should fail with repeated pairs of numerals ... ok
fromRoman should fail with too many repeated numerals ... ok
fromRoman should give known result with known input ... ok
toRoman should give known result with known input ... ok
fromRoman(toRoman(n))==n for all n ... ok
toRoman should fail with non−integer input ... ok
toRoman should fail with negative input ... ok
toRoman should fail with large input ... ok
toRoman should fail with 0 input ... ok

==

Dive Into Python 208

FAIL: fromRoman should fail with blank string
−−
Traceback (most recent call last):
 File "C:\docbook\dip\py\roman\stage6\romantest61.py", line 137, in testBlank
 self.assertRaises(roman61.InvalidRomanNumeralError, roman61.fromRoman, "")
 File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
 raise self.failureException, excName
AssertionError: InvalidRomanNumeralError
−−
Ran 13 tests in 2.864s

FAILED (failures=1)

Now you can fix the bug.

Example 15.4. Fixing the bug (roman62.py)

This file is available in py/roman/stage6/ in the examples directory.

def fromRoman(s):
 """convert Roman numeral to integer"""
 if not s:
 raise InvalidRomanNumeralError, 'Input can not be blank'
 if not re.search(romanNumeralPattern, s):
 raise InvalidRomanNumeralError, 'Invalid Roman numeral: %s' % s

 result = 0
 index = 0
 for numeral, integer in romanNumeralMap:
 while s[index:index+len(numeral)] == numeral:
 result += integer
 index += len(numeral)
 return result

Only two lines of code are required: an explicit check for an empty string, and a raise statement.

Example 15.5. Output of romantest62.py against roman62.py

fromRoman should only accept uppercase input ... ok
toRoman should always return uppercase ... ok
fromRoman should fail with blank string ... ok
fromRoman should fail with malformed antecedents ... ok
fromRoman should fail with repeated pairs of numerals ... ok
fromRoman should fail with too many repeated numerals ... ok
fromRoman should give known result with known input ... ok
toRoman should give known result with known input ... ok
fromRoman(toRoman(n))==n for all n ... ok
toRoman should fail with non−integer input ... ok
toRoman should fail with negative input ... ok
toRoman should fail with large input ... ok
toRoman should fail with 0 input ... ok

−−
Ran 13 tests in 2.834s

OK

The blank string test case now passes, so the bug is fixed.

Dive Into Python 209

All the other test cases still pass, which means that this bug fix didn't break anything else. Stop coding.
Coding this way does not make fixing bugs any easier. Simple bugs (like this one) require simple test cases; complex
bugs will require complex test cases. In a testing−centric environment, it may seem like it takes longer to fix a bug,
since you need to articulate in code exactly what the bug is (to write the test case), then fix the bug itself. Then if the
test case doesn't pass right away, you need to figure out whether the fix was wrong, or whether the test case itself has a
bug in it. However, in the long run, this back−and−forth between test code and code tested pays for itself, because it
makes it more likely that bugs are fixed correctly the first time. Also, since you can easily re−run all the test cases
along with your new one, you are much less likely to break old code when fixing new code. Today's unit test is
tomorrow's regression test.

15.2. Handling changing requirements

Despite your best efforts to pin your customers to the ground and extract exact requirements from them on pain of
horrible nasty things involving scissors and hot wax, requirements will change. Most customers don't know what they
want until they see it, and even if they do, they aren't that good at articulating what they want precisely enough to be
useful. And even if they do, they'll want more in the next release anyway. So be prepared to update your test cases as
requirements change.

Suppose, for instance, that you wanted to expand the range of the Roman numeral conversion functions. Remember
the rule that said that no character could be repeated more than three times? Well, the Romans were willing to make
an exception to that rule by having 4 M characters in a row to represent 4000. If you make this change, you'll be able
to expand the range of convertible numbers from 1..3999 to 1..4999. But first, you need to make some changes
to the test cases.

Example 15.6. Modifying test cases for new requirements (romantest71.py)

This file is available in py/roman/stage7/ in the examples directory.

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython−examples−5.4.zip) used in this book.

import roman71
import unittest

class KnownValues(unittest.TestCase):
 knownValues = ((1, 'I'),
 (2, 'II'),
 (3, 'III'),
 (4, 'IV'),
 (5, 'V'),
 (6, 'VI'),
 (7, 'VII'),
 (8, 'VIII'),
 (9, 'IX'),
 (10, 'X'),
 (50, 'L'),
 (100, 'C'),
 (500, 'D'),
 (1000, 'M'),
 (31, 'XXXI'),
 (148, 'CXLVIII'),
 (294, 'CCXCIV'),
 (312, 'CCCXII'),
 (421, 'CDXXI'),
 (528, 'DXXVIII'),

Dive Into Python 210

http://diveintopython.org/download/diveintopython-examples-5.4.zip

 (621, 'DCXXI'),
 (782, 'DCCLXXXII'),
 (870, 'DCCCLXX'),
 (941, 'CMXLI'),
 (1043, 'MXLIII'),
 (1110, 'MCX'),
 (1226, 'MCCXXVI'),
 (1301, 'MCCCI'),
 (1485, 'MCDLXXXV'),
 (1509, 'MDIX'),
 (1607, 'MDCVII'),
 (1754, 'MDCCLIV'),
 (1832, 'MDCCCXXXII'),
 (1993, 'MCMXCIII'),
 (2074, 'MMLXXIV'),
 (2152, 'MMCLII'),
 (2212, 'MMCCXII'),
 (2343, 'MMCCCXLIII'),
 (2499, 'MMCDXCIX'),
 (2574, 'MMDLXXIV'),
 (2646, 'MMDCXLVI'),
 (2723, 'MMDCCXXIII'),
 (2892, 'MMDCCCXCII'),
 (2975, 'MMCMLXXV'),
 (3051, 'MMMLI'),
 (3185, 'MMMCLXXXV'),
 (3250, 'MMMCCL'),
 (3313, 'MMMCCCXIII'),
 (3408, 'MMMCDVIII'),
 (3501, 'MMMDI'),
 (3610, 'MMMDCX'),
 (3743, 'MMMDCCXLIII'),
 (3844, 'MMMDCCCXLIV'),
 (3888, 'MMMDCCCLXXXVIII'),
 (3940, 'MMMCMXL'),
 (3999, 'MMMCMXCIX'),
 (4000, 'MMMM'),
 (4500, 'MMMMD'),
 (4888, 'MMMMDCCCLXXXVIII'),
 (4999, 'MMMMCMXCIX'))

 def testToRomanKnownValues(self):
 """toRoman should give known result with known input"""
 for integer, numeral in self.knownValues:
 result = roman71.toRoman(integer)
 self.assertEqual(numeral, result)

 def testFromRomanKnownValues(self):
 """fromRoman should give known result with known input"""
 for integer, numeral in self.knownValues:
 result = roman71.fromRoman(numeral)
 self.assertEqual(integer, result)

class ToRomanBadInput(unittest.TestCase):
 def testTooLarge(self):
 """toRoman should fail with large input"""
 self.assertRaises(roman71.OutOfRangeError, roman71.toRoman, 5000)

 def testZero(self):
 """toRoman should fail with 0 input"""
 self.assertRaises(roman71.OutOfRangeError, roman71.toRoman, 0)

 def testNegative(self):

Dive Into Python 211

 """toRoman should fail with negative input"""
 self.assertRaises(roman71.OutOfRangeError, roman71.toRoman, −1)

 def testNonInteger(self):
 """toRoman should fail with non−integer input"""
 self.assertRaises(roman71.NotIntegerError, roman71.toRoman, 0.5)

class FromRomanBadInput(unittest.TestCase):
 def testTooManyRepeatedNumerals(self):
 """fromRoman should fail with too many repeated numerals"""
 for s in ('MMMMM', 'DD', 'CCCC', 'LL', 'XXXX', 'VV', 'IIII'):
 self.assertRaises(roman71.InvalidRomanNumeralError, roman71.fromRoman, s)

 def testRepeatedPairs(self):
 """fromRoman should fail with repeated pairs of numerals"""
 for s in ('CMCM', 'CDCD', 'XCXC', 'XLXL', 'IXIX', 'IVIV'):
 self.assertRaises(roman71.InvalidRomanNumeralError, roman71.fromRoman, s)

 def testMalformedAntecedent(self):
 """fromRoman should fail with malformed antecedents"""
 for s in ('IIMXCC', 'VX', 'DCM', 'CMM', 'IXIV',
 'MCMC', 'XCX', 'IVI', 'LM', 'LD', 'LC'):
 self.assertRaises(roman71.InvalidRomanNumeralError, roman71.fromRoman, s)

 def testBlank(self):
 """fromRoman should fail with blank string"""
 self.assertRaises(roman71.InvalidRomanNumeralError, roman71.fromRoman, "")

class SanityCheck(unittest.TestCase):
 def testSanity(self):
 """fromRoman(toRoman(n))==n for all n"""
 for integer in range(1, 5000):
 numeral = roman71.toRoman(integer)
 result = roman71.fromRoman(numeral)
 self.assertEqual(integer, result)

class CaseCheck(unittest.TestCase):
 def testToRomanCase(self):
 """toRoman should always return uppercase"""
 for integer in range(1, 5000):
 numeral = roman71.toRoman(integer)
 self.assertEqual(numeral, numeral.upper())

 def testFromRomanCase(self):
 """fromRoman should only accept uppercase input"""
 for integer in range(1, 5000):
 numeral = roman71.toRoman(integer)
 roman71.fromRoman(numeral.upper())
 self.assertRaises(roman71.InvalidRomanNumeralError,
 roman71.fromRoman, numeral.lower())

if __name__ == "__main__":
 unittest.main()

The existing known values don't change (they're all still reasonable values to test), but you need to add a
few more in the 4000 range. Here I've included 4000 (the shortest), 4500 (the second shortest), 4888
(the longest), and 4999 (the largest).

The definition of "large input" has changed. This test used to call toRoman with 4000 and expect an
error; now that 4000−4999 are good values, you need to bump this up to 5000.

The definition of "too many repeated numerals" has also changed. This test used to call fromRoman
with 'MMMM' and expect an error; now that MMMM is considered a valid Roman numeral, you need to

Dive Into Python 212

bump this up to 'MMMMM'.

The sanity check and case checks loop through every number in the range, from 1 to 3999. Since the
range has now expanded, these for loops need to be updated as well to go up to 4999.

Now your test cases are up to date with the new requirements, but your code is not, so you expect several of the test
cases to fail.

Example 15.7. Output of

ERROR: toRoman should give known result with known input
−−
Traceback (most recent call last):
 File "C:\docbook\dip\py\roman\stage7\romantest71.py", line 96, in testToRomanKnownValues
 result = roman71.toRoman(integer)
 File "roman71.py", line 28, in toRoman
 raise OutOfRangeError, "number out of range (must be 1..3999)"
OutOfRangeError: number out of range (must be 1..3999)
==
ERROR: fromRoman(toRoman(n))==n for all n
−−
Traceback (most recent call last):
 File "C:\docbook\dip\py\roman\stage7\romantest71.py", line 147, in testSanity
 numeral = roman71.toRoman(integer)
 File "roman71.py", line 28, in toRoman
 raise OutOfRangeError, "number out of range (must be 1..3999)"
OutOfRangeError: number out of range (must be 1..3999)
−−
Ran 13 tests in 2.213s

FAILED (errors=5)

Now that you have test cases that fail due to the new requirements, you can think about fixing the code to bring it in
line with the test cases. (One thing that takes some getting used to when you first start coding unit tests is that the code
being tested is never "ahead" of the test cases. While it's behind, you still have some work to do, and as soon as it
catches up to the test cases, you stop coding.)

Example 15.8. Coding the new requirements (roman72.py)

This file is available in py/roman/stage7/ in the examples directory.

"""Convert to and from Roman numerals"""
import re

#Define exceptions
class RomanError(Exception): pass
class OutOfRangeError(RomanError): pass
class NotIntegerError(RomanError): pass
class InvalidRomanNumeralError(RomanError): pass

#Define digit mapping
romanNumeralMap = (('M', 1000),
 ('CM', 900),
 ('D', 500),
 ('CD', 400),
 ('C', 100),
 ('XC', 90),
 ('L', 50),
 ('XL', 40),
 ('X', 10),
 ('IX', 9),
 ('V', 5),
 ('IV', 4),
 ('I', 1))

def toRoman(n):
 """convert integer to Roman numeral"""
 if not (0 < n < 5000):
 raise OutOfRangeError, "number out of range (must be 1..4999)"
 if int(n) <> n:

Dive Into Python 214

Ran 13 tests in 3.685s

OK

All the test cases pass. Stop
coding.

Comprehensive unit testing means never having to rely on a programmer who says "Trust me."

15.3. Refactoring

The best thing about comprehensive unit testing is not the feeling you get when all your test cases finally pass, or even
the feeling you get when someone else blames you for breaking their code and you can actually prove that you didn't.
The best thing about unit testing is that it gives you the freedom to refactor mercilessly.

Refactoring is the process of taking working code and making it work better. Usually, "better" means "faster",
although it can also mean "using less memory", or "using less disk space", or simply "more elegantly". Whatever it
means to you, to your project, in your environment, refactoring is important to the long−term health of any program.

Here, "better" means "faster". Specifically, the fromRoman function is slower than it needs to be, because of that big
nasty regular expression that you use to validate Roman numerals. It's probably not worth trying to do away with the
regular expression altogether (it would be difficult, and it might not end up any faster), but you can speed up the
function by precompiling the regular expression.

Example 15.10. Compiling regular expressions

>>> import re
>>> pattern = '^M?M?M?$'
>>> re.search(pattern, 'M')
<SRE_Match object at 01090490>
>>> compiledPattern = re.compile(pattern)
>>> compiledPattern
<SRE_Pattern object at 00F06E28>
>>> dir(compiledPattern)
['findall', 'match', 'scanner', 'search', 'split', 'sub', 'subn']
>>> compiledPattern.search('M')
<SRE_Match object at 01104928>

This is the syntax you've seen before: re.search takes a regular expression as a string (pattern) and a
string to match against it ('M'). If the pattern matches, the function returns a match object which can be
queried to find out exactly what matched and how.

This is the new syntax: re.compile takes a regular expression as a string and returns a pattern object. Note
there is no string to match here. Compiling a regular expression has nothing to do with matching it against any
specific strings (like 'M'); it only involves the regular expression itself.

The compiled pattern object returned from re.compile has several useful−looking functions, including
several (like search and sub) that are available directly in the re module.

Calling the compiled pattern object's search function with the string 'M' accomplishes the same thing as
calling re.search with both the regular expression and the string 'M'. Only much, much faster. (In fact, the
re.search function simply compiles the regular expression and calls the resulting pattern object's search
method for you.)

Whenever you are going to use a regular expression more than once, you should compile it to get a pattern object,
then call the methods on the pattern object directly.

Dive Into Python 216

Example 15.11. Compiled regular expressions in roman81.py

This file is available in py/roman/stage8/ in the examples directory.

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython−examples−5.4.zip) used in this book.

toRoman and rest of module omitted for clarity

romanNumeralPattern = \
 re.compile('^M?M?M?M?(CM|CD|D?C?C?C?)(XC|XL|L?X?X?X?)(IX|IV|V?I?I?I?)$')

def fromRoman(s):
 """convert Roman numeral to integer"""
 if not s:
 raise InvalidRomanNumeralError, 'Input can not be blank'
 if not romanNumeralPattern.search(s):
 raise InvalidRomanNumeralError, 'Invalid Roman numeral: %s' % s

 result = 0
 index = 0
 for numeral, integer in romanNumeralMap:
 while s[index:index+len(numeral)] == numeral:
 result += integer
 index += len(numeral)
 return result

This looks very similar, but in fact a lot has changed. romanNumeralPattern is no longer a
string; it is a pattern object which was returned from re.compile.

That means that you can call methods on

http://diveintopython.org/download/diveintopython-examples-5.4.zip

just proved it.
There is one other performance optimization that I want to try. Given the complexity of regular expression syntax, it
should come as no surprise that there is frequently more than one way to write the same expression. After some
discussion about this module on comp.lang.python (http://groups.google.com/groups?group=comp.lang.python),
someone suggested that I try using the {m,n} syntax for the optional repeated characters.

Example 15.13. roman82.py

This file is available in py/roman/stage8/ in the examples directory.

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython−examples−5.4.zip) used in this book.

rest of program omitted for clarity

#old version
#romanNumeralPattern = \
re.compile('^M?M?M?M?(CM|CD|D?C?C?C?)(XC|XL|L?X?X?X?)(IX|IV|V?I?I?I?)$')

#new version
romanNumeralPattern = \
 re.compile('^M{0,4}(CM|CD|D?C{0,3})(XC|XL|L?X{0,3})(IX|IV|V?I{0,3})$')

You have replaced M?M?M?M? with M{0,4}. Both mean the same thing: "match 0 to 4 M characters".
Similarly, C?C?C? became C{0,3} ("match 0 to 3 C characters") and so forth for X and I.

This form of the regular expression is a little shorter (though not any more readable). The big question is, is it any
faster?

Example 15.14. Output of romantest82.py against roman82.py

.............
−−
Ran 13 tests in 3.315s

OK

Overall, the unit tests run 2% faster with this form of regular expression. That doesn't sound exciting,
but remember that the search function is a small part of the overall unit test; most of the time is spent
doing other things. (Separately, I time−tested just the regular expressions, and found that the search
function is 11% faster with this syntax.) By precompiling the regular expression and rewriting part of it
to use this new syntax, you've improved the regular expression performance by over 60%, and improved
the overall performance of the entire unit test by over 10%.

More important than any performance boost is the fact that the module still works perfectly. This is the
freedom I was talking about earlier: the freedom to tweak, change, or rewrite any piece of it and verify
that you haven't messed anything up in the process. This is not a license to endlessly tweak your code
just for the sake of tweaking it; you had a very specific objective ("make fromRoman faster"), and you
were able to accomplish that objective without any lingering doubts about whether you introduced new
bugs in the process.

One other tweak I would like to make, and then I promise I'll stop refactoring and put this module to bed. As you've
seen repeatedly, regular expressions can get pretty hairy and unreadable pretty quickly. I wouldn't like to come back to
this module in six months and try to maintain it. Sure, the test cases pass, so I know that it works, but if I can't figure
out how it works, it's still going to be difficult to add new features, fix new bugs, or otherwise maintain it. As you saw

Dive Into Python 218

http://groups.google.com/groups?group=comp.lang.python
http://diveintopython.org/download/diveintopython-examples-5.4.zip

http://diveintopython.org/download/diveintopython-examples-5.4.zip

you build the lookup table for converting integers to Roman numerals, you can build the reverse lookup table to
convert Roman numerals to integers.

And best of all, he already had a complete set of unit tests. He changed over half the code in the module, but the unit
tests stayed the same, so he could prove that his code worked just as well as the original.

Example 15.17. roman9.py

This file is available in py/roman/stage9/ in the examples directory.

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython−examples−5.4.zip) used in this book.

#Define exceptions
class RomanError(Exception): pass
class OutOfRangeError(RomanError): pass
class NotIntegerError(RomanError): pass
class InvalidRomanNumeralError(RomanError): pass

#Roman numerals must be less than 5000
MAX_ROMAN_NUMERAL = 4999

#Define digit mapping
romanNumeralMap = (('M', 1000),
 ('CM', 900),
 ('D', 500),
 ('CD', 400),
 ('C', 100),
 ('XC', 90),
 ('L', 50),
 ('XL', 40),
 ('X', 10),
 ('IX', 9),
 ('V', 5),
 ('IV', 4),
 ('I', 1))

#Create tables for fast conversion of roman numerals.
#See fillLookupTables() below.
toRomanTable = [None] # Skip an index since Roman numerals have no zero
fromRomanTable = {}

def toRoman(n):
 """convert integer to Roman numeral"""
 if not (0 < n <= MAX_ROMAN_NUMERAL):
 raise OutOfRangeError, "number out of range (must be 1..%s)" % MAX_ROMAN_NUMERAL
 if int(n) <> n:
 raise NotIntegerError, "non−integers can not be converted"
 return toRomanTable[n]

def fromRoman(s):
 """convert Roman numeral to integer"""
 if not s:
 raise InvalidRomanNumeralError, "Input can not be blank"
 if not fromRomanTable.has_key(s):
 raise InvalidRomanNumeralError, "Invalid Roman numeral: %s" % s
 return fromRomanTable[s]

def toRomanDynamic(n):

Dive Into Python 220

http://diveintopython.org/download/diveintopython-examples-5.4.zip

 """convert integer to Roman numeral using dynamic programming"""
 result = ""
 for numeral, integer in romanNumeralMap:
 if n >= integer:
 result = numeral
 n −= integer
 break
 if n > 0:
 result += toRomanTable[n]
 return result

def fillLookupTables():
 """compute all the possible roman numerals"""
 #Save the values in two global tables to convert to and from integers.
 for integer in range(1, MAX_ROMAN_NUMERAL + 1):
 romanNumber = toRomanDynamic(integer)
 toRomanTable.append(romanNumber)
 fromRomanTable[romanNumber] = integer

fillLookupTables()

So how fast is it?

Example 15.18. Output of romantest9.py against roman9.py

.............
−−
Ran 13 tests in 0.791s

OK

Remember, the best performance you ever got in the original version was 13 tests in 3.315 seconds. Of course, it's not
entirely a fair comparison, because this version will take longer to import (when it fills the lookup tables). But since
import is only done once, this is negligible in the long run.

The moral of the story?

Simplicity is a virtue.•
Especially when regular expressions are involved.•
And unit tests can give you the confidence to do large−scale refactoring... even if you didn't write the original
code.

•

15.5. Summary

Designing test cases that are specific, automated, and independent•
Writing test cases before the code they are testing•
Writing tests that test good input and check for proper results•
Writing tests that test bad input and check for proper failures•
Writing and updating test cases to illustrate bugs or reflect new requirements•
Refactoring mercilessly to improve performance, scalability, readability, maintainability, or whatever other
−ility you're lacking

•

Additionally, you should be comfortable doing all of the following Python−specific things:

Subclassing unittest.TestCase and writing methods for individual test cases•
Using assertEqual to check that a function returns a known value•
Using assertRaises to check that a function raises a known exception•
Calling unittest.main() in your if __name__ clause to run all your test cases at once•
Running unit tests in verbose or regular mode•

Further reading

XProgramming.com (http://www.xprogramming.com/) has links to download unit testing frameworks
(http://www.xprogramming.com/software.htm) for many different languages.

•

Dive Into Python 222

http://www.xprogramming.com/
http://www.xprogramming.com/software.htm

Chapter 16. Functional Programming

16.1. Diving in

In Chapter 13, Unit Testing, you learned about the philosophy of unit testing. In Chapter 14, Test−First Programming,
you stepped through the implementation of basic unit tests in Python. In Chapter 15, Refactoring, you saw how unit
testing makes large−scale refactoring easier. This chapter will build on those sample programs, but here we will focus
more on advanced Python−specific techniques, rather than on unit testing itself.

The following is a complete Python program that acts as a cheap and simple regression testing framework. It takes
unit tests that you've written for individual modules, collects them all into one big test suite, and runs them all at once.
I actually use this script as part of the build process for this book; I have unit tests for several of the example programs
(not just the roman.py module featured in Chapter 13, Unit Testing), and the first thing my automated build script
does is run this program to make sure all my examples still work. If this regression test fails, the build immediately
stops. I don't want to release non−working examples any more than you want to download them and sit around
scratching your head and yelling at your monitor and wondering why they don't work.

Example 16.1. regression.py

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython−examples−5.4.zip) used in this book.

"""Regression testing framework

This module will search for scripts in the same directory named
XYZtest.py. Each such script should be a test suite that tests a
module through PyUnit. (As of Python 2.1, PyUnit is included in
the standard library as "unittest".) This script will aggregate all
found test suites into one big test suite and run them all at once.
"""

import sys, os, re, unittest

def regressionTest():
 path = os.path.abspath(os.path.dirname(sys.argv[0]))
 files = os.listdir(path)
 test = re.compile("test\.py$", re.IGNORECASE)
 files = filter(test.search, files)
 filenameToModuleName = lambda f: os.path.splitext(f)[0]
 moduleNames = map(filenameToModuleName, files)
 modules = map(__import__, moduleNames)
 load = unittest.defaultTestLoader.loadTestsFromModule
 return unittest.TestSuite(map(load, modules))

if __name__ == "__main__":
 unittest.main(defaultTest="regressionTest")

Running this script in the same directory as the rest of the example scripts that come with this book will find all the
unit tests, named moduletest.py, run them as a single test, and pass or fail them all at once.

Example 16.2. Sample output of regression.py

[you@localhost py]$ python regression.py −v
help should fail with no object ... ok

Dive Into Python 223

http://diveintopython.org/download/diveintopython-examples-5.4.zip

help should return known result for apihelper ... ok
help should honor collapse argument ... ok
help should honor spacing argument ... ok
buildConnectionString should fail with list input ... ok
buildConnectionString should fail with string input ... ok
buildConnectionString should fail with tuple input ... ok
buildConnectionString handles empty dictionary ... ok
buildConnectionString returns known result with known input ... ok
fromRoman should only accept uppercase input ... ok
toRoman should always return uppercase ... ok
fromRoman should fail with blank string ... ok
fromRoman should fail with malformed antecedents ... ok
fromRoman should fail with repeated pairs of numerals ... ok
fromRoman should fail with too many repeated numerals ... ok
fromRoman should give known result with known input ... ok
toRoman should give known result with known input ... ok
fromRoman(toRoman(n))==n for all n ... ok
toRoman should fail with non−integer input ... ok
toRoman should fail with negative input ... ok
toRoman should fail with large input ... ok
toRoman should fail with 0 input ... ok
kgp a ref test ... ok
kgp b ref test ... ok
kgp c ref test ... ok
kgp d ref test ... ok
kgp e ref test ... ok
kgp f ref test ... ok
kgp g ref test ... ok

−−
Ran 29 tests in 2.799s

OK

The first 5 tests are from apihelpertest.py, which tests the example script from Chapter 4, The Power Of
Introspection.

The next 5 tests are from odbchelpertest.py, which tests the example script from Chapter 2, Your First
Python Program.

The rest are from romantest.py, which you studied in depth in Chapter 13, Unit Testing.

16.2. Finding the path

When running Python scripts from the command line, it is sometimes useful to know where the currently running
script is located on disk.

This is one of those obscure little tricks that is virtually impossible to figure out on your own, but simple to remember
once you see it. The key to it is sys.argv. As you saw in Chapter 9, XML Processing, this is a list that holds the list
of command−line arguments. However, it also holds the name of the running script, exactly as it was called from the
command line, and this is enough information to determine its location.

Example 16.3. fullpath.py

Ifdret ehi7s in 2.799s

http://diveintopython.org/download/diveintopython-examples-5.4.zip

print 'sys.argv[0] =', sys.argv[0]
pathname = os.path.dirname(sys.argv[0])
print 'path =', pathname

[you@localhost py]$ python fullpath.py
sys.argv[0] = fullpath.py
path =
full path = /home/you/diveintopython/common/py

In the first case, sys.argv[0] includes the full path of the script. You can then use the
os.path.dirname function to strip off the script name and return the full directory name, and
os.path.abspath simply returns what you give it.

If the script is run by using a partial pathname, sys.argv[0] will still contain exactly what appears on the
command line. os.path.dirname will then give you a partial pathname (relative to the current directory),
and os.path.abspath will construct a full pathname from the partial pathname.

If the script is run from the current directory without giving any path, os.path.dirname will simply return
an empty string. Given an empty string, os.path.abspath returns the current directory, which is what you
want, since the script was run from the current directory.

Like the other functions in the os and os.path modules, os.path.abspath is cross−platform. Your results
will look slightly different than my examples if you're running on Windows (which uses backslash as a path
separator) or Mac OS (which uses colons), but they'll still work. That's the whole point of the os module.
Addendum. One reader was dissatisfied with this solution, and wanted to be able to run all the unit tests in the current
directory, not the directory where regression.py is located. He suggests this approach instead:

Example 16.6. Running scripts in the current directory

import sys, os, re, unittest

def regressionTest():
 path = os.getcwd()
 sys.path.append(path)
 files = os.listdir(path)

Instead of setting path to the directory where the currently running script is located, you set it to the
current working directory instead. This will be whatever directory you were in before you ran the script,
which is not necessarily the same as the directory the script is in. (Read that sentence a few times until
you get it.)

Append this directory to the Python library search path, so that when you dynamically import the unit
test modules later, Python can find them. You didn't need to do this when path was the directory of the
currently running script, because Python always looks in that directory.

The rest of the function is the same.
This technique will allow you to re−use this regression.py script on multiple projects. Just put the script in a
common directory, then change to the project's directory before running it. All of that project's unit tests will be found
and tested, instead of the unit tests in the common directory where regression.py is located.

16.3. Filtering lists revisited

You're already familiar with using list comprehensions to filter lists. There is another way to accomplish this same
thing, which some people feel is more expressive.

Python has a built−in filter function which takes two arguments, a function and a list, and returns a list.[7] The
function passed as the first argument to filter must itself take one argument, and the list that filter returns will
contain all the elements from the list passed to filter for which the function passed to filter returns true.

Got all that? It's not as difficult as it sounds.

Dive Into Python 226

Example 16.9. Filtering using list comprehensions instead

 files = os.listdir(path)
 test = re.compile("test\.py$", re.IGNORECASE)
 files = [f for f in files if test.search(f)]

This will accomplish exactly the same result as using the filter function. Which way is more expressive?
That's up to you.

16.4. Mapping lists revisited

You're already familiar with using list comprehensions to map one list into another. There is another way to
accomplish the same thing, using the built−in map function. It works much the same way as the filter function.

Example 16.10. Introducing map

>>> def double(n):
... return n*2
...
>>> li = [1, 2, 3, 5, 9, 10, 256, −3]
>>> map(double, li)
[2, 4, 6, 10, 18, 20, 512, −6]
>>> [double(n) for n in li]
[2, 4, 6, 10, 18, 20, 512, −6]
>>> newlist = []
>>> for n in li:
... newlist.append(double(n))
...
>>> newlist
[2, 4, 6, 10, 18, 20, 512, −6]

map takes a function and a list
[8]

 and returns a new list by calling the function with each element of the
list in order. In this case, the function simply multiplies each element by 2.

You could accomplish the same thing with a list comprehension. List comprehensions were first
introduced in Python 2.0; map has been around forever.

You could, if you insist on thinking like a Visual Basic programmer, use a for loop to accomplish the
same thing.

Example 16.11. map with lists of mixed datatypes

>>> li = [5, 'a', (2, 'b')]
>>> map(double, li)
[10, 'aa', (2, 'b', 2, 'b')]

As a side note, I'd like to point out that map works just as well with lists of mixed datatypes, as long as the
function you're using correctly handles each type. In this case, the double function simply multiplies the
given argument by 2, and Python Does The Right Thing depending on the datatype of the argument. For
integers, this means actually multiplying it by 2; for strings, it means concatenating the string with itself; for
tuples, it means making a new tuple that has all of the elements of the original, then all of the elements of the
original again.

All right, enough play time. Let's look at some real code.

Example 16.12. map in regression.py

Dive Into Python 228

<module 'os' from 'c:\Python22\lib\os.pyc'>,
<module 're' from 'c:\Python22\lib\re.pyc'>,
<module 'unittest' from 'c:\Python22\lib\unittest.pyc'>]
>>> modules[0].version
'2.2.2 (#37, Nov 26 2002, 10:24:37) [MSC 32 bit (Intel)]'
>>> import sys
>>> sys.version
'2.2.2 (#37, Nov 26 2002, 10:24:37) [MSC 32 bit (Intel)]'

moduleNames is just a list of strings. Nothing fancy, except that the strings happen to be names
of modules that you could import, if you wanted to.

Surprise, you wanted to import them, and you did, by mapping the __import__ function onto
the list. Remember, this takes each element of the list (moduleNames) and calls the function
(__import__) over and over, once with each element of the list, builds a list of the return
values, and returns the result.

So now from a list of strings, you've created a list of actual modules. (Your paths may be
different, depending on your operating system, where you installed Python, the phase of the
moon, etc.)

To drive home the point that these are real modules, let's look at some module attributes.
Remember, modules[0] is the sys module, so modules[0].version is sys.version.
All the other attributes and methods of these modules are also available. There's nothing magic
about the import statement, and there's nothing magic about modules. Modules are objects.
Everything is an object.

Now you should be able to put this all together and figure out what most of this chapter's code sample is doing.

16.7. Putting it all together

You've learned enough now to deconstruct the first seven lines of this chapter's code sample: reading a directory and
importing selected modules within it.

Example 16.16. The regressionTest function

def regressionTest():
 path = os.path.abspath(os.path.dirname(sys.argv[0]))
 files = os.listdir(path)
 test = re.compile("test\.py$", re.IGNORECASE)
 files = filter(test.search, files)
 filenameToModuleName = lambda f: os.path.splitext(f)[0]
 moduleNames = map(filenameToModuleName, files)
 modules = map(__import__, moduleNames)
load = unittest.defaultTestLoader.loadTestsFromModule
return unittest.TestSuite(map(load, modules))

Let's look at it line by line, interactively. Assume that the current directory is c:\diveintopython\py, which
contains the examples that come with this book, including this chapter's script. As you saw in Section 16.2, �Finding
the path�, the script directory will end up in the path variable, so let's start hard−code that and go from there.

Example 16.17. Step 1: Get all the files

>>> import sys, os, re, unittest
>>> path = r'c:\diveintopython\py'
>>> files = os.listdir(path)
>>> files

Dive Into Python 231

['BaseHTMLProcessor.py', 'LICENSE.txt', 'apihelper.py', 'apihelpertest.py',
'argecho.py', 'autosize.py', 'builddialectexamples.py', 'dialect.py',
'fileinfo.py', 'fullpath.py', 'kgptest.py', 'makerealworddoc.py',
'odbchelper.py', 'odbchelpertest.py', 'parsephone.py', 'piglatin.py',
'plural.py', 'pluraltest.py', 'pyfontify.py', 'regression.py', 'roman.py', 'romantest.py',
'uncurly.py', 'unicode2koi8r.py', 'urllister.py', 'kgp', 'plural', 'roman',
'colorize.py']

files is a list of all the files and directories in the script's directory. (If you've been running some of the
examples already, you may also see some .pyc files in there as well.)

Example 16.18. Step 2: Filter to find the files you care about

>>> test = re.compile("test\.py$", re.IGNORECASE)
>>> files = filter(test.search, files)
>>> files
['apihelpertest.py', 'kgptest.py', 'odbchelpertest.py', 'pluraltest.py', 'romantest.py']

This regular expression will match any string that ends with test.py. Note that you need to escape the
period, since a period in a regular expression usually means "match any single character", but you actually want
to match a literal period instead.

The compiled regular expression acts like a function, so you can use it to filter the large list of files and
directories, to find the ones that match the regular expression.

And you're left with the list of unit testing scripts, because they were the only ones named
SOMETHINGtest.py.

Example 16.19. Step 3: Map filenames to module names

>>> filenameToModuleName = lambda f: os.path.splitext(f)[0]
>>> filenameToModuleName('romantest.py')
'romantest'
>>> filenameToModuleName('odchelpertest.py')
'odbchelpertest'
>>> moduleNames = map(filenameToModuleName, files)
>>> moduleNames

.[' rg 6pme, ffiles 0Aptss aly ff> fiystmoduleNs ariot96 Td(And dEeick− ex−−16t
/Fwelofs,)Tjdul.'romantest.py'leNs ariot96 Td(ed tolar 0 0s,)Tjdul.

<module 'pluraltest' from 'pluraltest.py'>,
<module 'romantest' from 'romantest.py'>]
>>> modules[−1]
<module 'romantest' from 'romantest.py'>

As you saw in Section 16.6, �Dynamically importing modules�, you can use a combination of map and
__import__ to map a list of module names (as strings) into actual modules (which you can call or
access like any other module).

modules is now a list of modules, fully accessible like any other module.

The last module in the list is the romantest module, just as if you had said import romantest.

Example 16.21. Step 5: Loading the modules into a test suite

>>> load = unittest.defaultTestLoader.loadTestsFromModule
>>> map(load, modules)
[<unittest.TestSuite tests=[
 <unittest.TestSuite tests=[<apihelpertest.BadInput testMethod=testNoObject>]>,
 <unittest.TestSuite tests=[<apihelpertest.KnownValues testMethod=testApiHelper>]>,
 <unittest.TestSuite tests=[
 <apihelpertest.ParamChecks testMethod=testCollapse>,
 <apihelpertest.ParamChecks testMethod=testSpacing>]>,
 ...
]
]
>>> unittest.TestSuite(map(load, modules))

These are real module objects. Not only can you access them like any other module, instantiate classes and call
functions, you can also introspect into the module to figure out which classes and functions it has in the first
place. That's what the loadTestsFromModule method does: it introspects into each module and returns a
unittest.TestSuite object for each module. Each TestSuite object actually contains a list of
TestSuite objects, one for each TestCase class in your module, and each of those TestSuite objects
contains a list of tests, one for each test method in your module.

Finally, you wrap the list of TestSuite objects into one big test suite. The unittest module has no
problem traversing this tree of nested test suites within test suites; eventually it gets down to an individual test
method and executes it, verifies that it passes or fails, and moves on to the next one.

This introspection process is what the unittest module usually does for us. Remember that magic−looking
unittest.main() function that our individual test modules called to kick the whole thing off?
unittest.main() actually creates an instance of unittest.TestProgram, which in turn creates an instance
of a unittest.defaultTestLoader and loads it up with the module that called it. (How does it get a reference
to the module that called it if you don't give it one? By using the equally−magic __import__('__main__')
command, which dynamically imports the currently−running module. I could write a book on all the tricks and
techniques used in the unittest module, but then I'd never finish this one.)

Example 16.22. Step 6: Telling unittest to use your test suite

if __name__ == "__main__":
 unittest.main(defaultTest="regressionTest")

Instead of letting the unittest module do all its magic for us, you've done most of it
yourself. You've created a function (regressionTest) that imports the modules
yourself, calls unittest.defaultTestLoader yourself, and wraps it all up in a test
suite. Now all you need to do is tell unittest that, instead of looking for tests and
building a test suite in the usual way, it should just call the regressionTest function,

Dive Into Python 233

which returns a ready−to−use TestSuite.

16.8. Summary

The regression.py program and its output should now make perfect sense.

You should now feel comfortable doing all of these things:

Manipulating path information from the command line.•
Filtering lists using filter instead of list comprehensions.•
Mapping lists using map instead of list comprehensions.•
Dynamically importing modules.•

[7] Technically, the second argument to filter can be any sequence, including lists, tuples, and custom classes that
act like lists by defining the __getitem__ special method. If possible, filter will return the same datatype as
you give it, so filtering a list returns a list, but filtering a tuple returns a tuple.

[8] Again, I should point out that map can take a list, a tuple, or any object that acts like a sequence. See previous
footnote about filter.

Dive Into Python 234

Chapter 17. Dynamic functions

17.1. Diving in

I want to talk about plural nouns. Also, functions that return other functions, advanced regular expressions, and
generators. Generators are new in Python 2.3. But first, let's talk about how to make plural nouns.

If you haven't read Chapter 7, Regular Expressions, now would be a good time. This chapter assumes you understand
the basics of regular expressions, and quickly descends into more advanced uses.

English is a schizophrenic language that borrows from a lot of other languages, and the rules for making singular
nouns into plural nouns are varied and complex. There are rules, and then there are exceptions to those rules, and then
there are exceptions to the exceptions.

If you grew up in an English−speaking country or learned English in a formal school setting, you're probably familiar
with the basic rules:

If a word ends in S, X, or Z, add ES. "Bass" becomes "basses", "fax" becomes "faxes", and "waltz" becomes
"waltzes".

1.

If a word ends in a noisy H, add ES; if it ends in a silent H, just add S. What's a noisy H? One that gets
combined with other letters to make a sound that you can hear. So "coach" becomes "coaches" and "rash"
becomes "rashes", because you can hear the CH and SH sounds when you say them. But "cheetah" becomes
"cheetahs", because the H is silent.

2.

If a word ends in Y that sounds like I, change the Y to IES; if the Y is combined with a vowel to sound like
something else, just add S. So "vacancy" becomes "vacancies", but "day" becomes "days".

3.

If all else fails, just add S and hope for the best.4.

(I know, there are a lot of exceptions. "Man" becomes "men" and "woman" becomes "women", but "human" becomes
"humans". "Mouse" becomes "mice" and "louse" becomes "lice", but "house" becomes "houses". "Knife" becomes
"knives" and "wife" becomes "wives", but "lowlife" becomes "lowlifes". And don't even get me started on words that
are their own plural, like "sheep", "deer", and "haiku".)

Other languages are, of course, completely different.

Let's design a module that pluralizes nouns. Start with just English nouns, and just these four rules, but keep in mind
that you'll inevitably need to add more rules, and you may eventually need to add more languages.

17.2. plural.py, stage 1

So you're looking at words, which at least in English are strings of characters. And you have rules that say you need to
find different combinations of characters, and then do different things to them. This sounds like a job for regular
expressions.

Example 17.1. plural1.py

import re

def plural(noun):
 if re.search('[sxz]$', noun):
 return re.sub('$', 'es', noun)
 elif re.search('[^aeioudgkprt]h$', noun):

Dive Into Python 235

 return re.sub('$', 'es', noun)
 elif re.search('[^aeiou]y$', noun):
 return re.sub('y$', 'ies', noun)
 else:
 return noun + 's'

OK, this is a regular expression, but it uses a syntax you didn't see in Chapter 7, Regular Expressions. The
square brackets mean "match exactly one of these characters". So [sxz] means "s, or x, or z", but only one of
them. The $ should be familiar; it matches the end of string. So you're checking to see if noun ends with s, x,
or z.

This re.sub function performs regular expression−based string substitutions. Let's look at it in more detail.

Example 17.2. Introducing re.sub

>>> import re
>>> re.search('[abc]', 'Mark')
<_sre.SRE_Match object at 0x001C1FA8>
>>> re.sub('[abc]', 'o', 'Mark')
'Mork'
>>> re.sub('[abc]', 'o', 'rock')
'rook'
>>> re.sub('[abc]', 'o', 'caps')
'oops'

Does the string Mark contain a, b, or c? Yes, it contains a.

OK, now find a, b, or c, and replace it with o. Mark becomes Mork.

The same function turns rock into rook.

You might think this would turn caps into oaps, but it doesn't. re.sub replaces all of the matches, not just
the first one. So this regular expression turns caps into oops, because both the c and the a get turned into o.

Example 17.3. Back to plural1.py

import re

def plural(noun):
 if re.search('[sxz]$', noun):
 return re.sub('$', 'es', noun)
 elif re.search('[^aeioudgkprt]h$', noun):
 return re.sub('$', 'es', noun)
 elif re.search('[^aeiou]y$', noun):
 return re.sub('y$', 'ies', noun)
 else:
 return noun + 's'

Back to the plural function. What are you doing? You're replacing the end of string with es. In other words,
adding es to the string. You could accomplish the same thing with string concatenation, for example noun +
'es', but I'm using regular expressions for everything, for consistency, for reasons that will become clear later
in the chapter.

Look closely, this is another new variation. The ^ as the first character inside the square brackets means
something special: negation. [^abc] means "any single character excepta, b, or c". So [^aeioudgkprt]
means any character except a, e, i, o, u, d, g, k, p, r, or t. Then that character needs to be followed by h,
followed by end of string. You're looking for words that end in H where the H can be heard.

Same pattern here: match words that end in Y, where the character before the Y is nota, e, i, o, or u. You're
looking for words that end in Y that sounds like I.

Dive Into Python 236

Example 17.4. More on negation regular expressions

>>> import re
>>> re.search('[^aeiou]y$', 'vacancy')
<_sre.SRE_Match object at 0x001C1FA8>
>>> re.search('[^aeiou]y$', 'boy')
>>>
>>> re.search('[^aeiou]y$', 'day')
>>>
>>> re.search('[^aeiou]y$', 'pita')
>>>

vacancy matches this regular expression, because it ends in cy, and c is not a, e, i, o, or u.

boy does not match, because it ends in oy, and you specifically said that the character before the y could
not be o. day does not match, because it ends in ay.

pita does not match, because it does not end in y.

Example 17.5. More on re.sub

>>> re.sub('y$', 'ies', 'vacancy')
'vacancies'
>>> re.sub('y$', 'ies', 'agency')
'agencies'
>>> re.sub('([^aeiou])y$', r'\1ies', 'vacancy')
'vacancies'

This regular expression turns vacancy into vacancies and agency into agencies, which is
what you wanted. Note that it would also turn boy into boies, but that will never happen in the
function because you did that re.search first to find out whether you should do this re.sub.

Just in passing, I want to point out that it is possible to combine these two regular expressions (one to
find out if the rule applies, and another to actually apply it) into a single regular expression. Here's what
that would look like. Most of it should look familiar: you're using a remembered group, which you
learned in Section 7.6, �Case study: Parsing Phone Numbers�, to remember the character before the y.
Then in the substitution string, you use a new syntax, \1, which means "hey, that first group you
remembered? put it here". In this case, you remember the c before the y, and then when you do the
substitution, you substitute c in place of c, and ies in place of y. (If you have more than one
remembered group, you can use \2 and \3 and so on.)

Regular expression substitutions are extremely powerful, and the \1 syntax makes them even more powerful. But
combining the entire operation into one regular expression is also much harder to read, and it doesn't directly map to
the way you first described the pluralizing rules. You originally laid out rules like "if the word ends in S, X, or Z, then
add ES". And if you look at this function, you have two lines of code that say "if the word ends in S, X, or Z, then add
ES". It doesn't get much more direct than that.

17.3. plural.py, stage 2

Now you're going to add a level of abstraction. You started by defining a list of rules: if this, then do that, otherwise
go to the next rule. Let's temporarily complicate part of the program so you can simplify another part.

Example 17.6. plural2.py

import re

def match_sxz(noun):

Dive Into Python 237

 if match_y(noun):
 return apply_y(noun)
 if match_default(noun):
 return apply_default(noun)

The benefit here is that that plural function is now simplified. It takes a list of rules, defined elsewhere, and iterates
through them in a generic fashion. Get a match rule; does it match? Then call the apply rule. The rules could be
defined anywhere, in any way. The plural function doesn't care.

Now, was adding this level of abstraction worth it? Well, not yet. Let's consider what it would take to add a new rule
to the function. Well, in the previous example, it would require adding an if statement to the plural function. In
this example, it would require adding two functions, match_foo and apply_foo, and then updating the rules
list to specify where in the order the new match and apply functions should be called relative to the other rules.

This is really just a stepping stone to the next section. Let's move on.

17.4. plural.py, stage 3

Defining separate named functions for each match and apply rule isn't really necessary. You never call them directly;
you define them in the rules list and call them through there. Let's streamline the rules definition by anonymizing
those functions.

Example 17.8. plural3.py

import re

rules = \
 (
 (
 lambda word: re.search('[sxz]$', word),
 lambda word: re.sub('$', 'es', word)
),
 (
 lambda word: re.search('[^aeioudgkprt]h$', word),
 lambda word: re.sub('$', 'es', word)
),
 (
 lambda word: re.search('[^aeiou]y$', word),
 lambda word: re.sub('y$', 'ies', word)
),
 (
 lambda word: re.search('$', word),
 lambda word: re.sub('$', 's', word)
)
)

def plural(noun):
 for matchesRule, applyRule in rules:
 if matchesRule(noun):
 return applyRule(noun)

This is the same set of rules as you defined in stage 2. The only difference is that instead of defining
named functions like match_sxzaptch_sxz

the first rule, and if it returns a true value, calls the second rule and returns the value. Same as above,
word for word. The only difference is that the rule functions were defined inline, anonymously, using
lambda functions. But the plural function doesn't care how they were defined; it just gets a list of
rules and blindly works through them.

Now to add a new rule, all you need to do is define the functions directly in the rules list itself: one match rule, and
one apply rule. But defining the rule functions inline like this makes it very clear that you have some unnecessary
duplication here. You have four pairs of functions, and they all follow the same pattern. The match function is a single
call to re.search, and the apply function is a single call to re.sub. Let's factor out these similarities.

17.5. plural.py, stage 4

Let's factor out the duplication in the code so that defining new rules can be easier.

Example 17.9. plural4.py

import re

def buildMatchAndApplyFunctions((pattern, search, replace)):
 matchFunction = lambda word: re.search(pattern, word)
 applyFunction = lambda word: re.sub(search, replace, word)
 return (matchFunction, applyFunction)

buildMatchAndApplyFunctions is a function that builds other functions dynamically. It takes
pattern, search and replace (actually it takes a tuple, but more on that in a minute), and you can build
the match function using the lambda syntax to be a function that takes one parameter (word) and calls
re.search with the pattern that was passed to the buildMatchAndApplyFunctions function, and
the word that was passed to the match function you're building. Whoa.

Building the apply function works the same way. The apply function is a function that takes one parameter, and
calls re.sub with the search and replace parameters that were passed to the
buildMatchAndApplyFunctions function, and the word that was passed to the apply function you're
building. This technique of using the values of outside parameters within a dynamic function is called closures.
You're essentially defining constants within the apply function you're building: it takes one parameter (word),
but it then acts on that plus two other values (search and replace) which were set when you defined the
apply function.

Finally, the buildMatchAndApplyFunctions function returns a tuple of two values: the two functions
you just created. The constants you defined within those functions (

def plural(noun, language='en'):
 lines = file('rules.%s' % language).readlines()
 patterns = map(string.split, lines)
 rules = map(buildRule, patterns)
 for rule in rules:
 result = rule(noun)
 if result: return result

You're still using the closures technique here (building a function dynamically that uses variables defined
outside the function), but now you've combined the separate match and apply functions into one. (The reason
for this change will become clear in the next section.) This will let you accomplish the same thing as having
two functions, but you'll need to call it differently, as you'll see in a minute.

Our plural function now takes an optional second parameter, language, which defaults to en.

You use the language parameter to construct a filename, then open the file and read the contents into a list. If
language is en, then you'll open the rules.en file, read the entire thing, break it up by carriage returns,
and return a list. Each line of the file will be one element in the list.

As you saw, each line in the file really has three values, but they're separated by whitespace (tabs or spaces, it
makes no difference). Mapping the string.split function onto this list will create a new list where each
element is a tuple of three strings. So a line like [sxz]$ $ es will be broken up into the tuple
('[sxz]$', '$', 'es'). This means that patterns will end up as a list of tuples, just like you
hard−coded it in stage 4.

If patterns is a list of tuples, then rules will be a list of the functions created dynamically by each call to
buildRule. Calling

http://www.python.org/peps/pep-0255.html
http://www.activestate.com/ASPN/Python/Cookbook/
http://www.google.com/search?q=generators+cookbook+site:aspn.activestate.com

http://diveintopython.org/download/diveintopython-examples-5.4.zip

 # 4. remove all "9"s
 digits3 = re.sub('9', '', digits2)

 # 5. pad end with "0"s to 4 characters
 while len(digits3) < 4:
 digits3 += "0"

 # 6. return first 4 characters
 return digits3[:4]

if __name__ == '__main__':
 from timeit import Timer
 names = ('Woo', 'Pilgrim', 'Flingjingwaller')
 for name in names:
 statement = "soundex('%s')" % name
 t = Timer(statement, "from __main__ import soundex")
 print name.ljust(15), soundex(name), min(t.repeat())

Further Reading on Soundex

Soundexing and Genealogy (http://www.avotaynu.com/soundex.html) gives a chronology of the evolution of
the Soundex and its regional variations.

•

18.2. Using the timeit Module

The most important thing you need to know about optimizing Python code is that you shouldn't write your own timing
function.

Timing short pieces of code is incredibly complex. How much processor time is your computer devoting to running
this code? Are there things running in the background? Are you sure? Every modern computer has background
processes running, some all the time, some intermittently. Cron jobs fire off at consistent intervals; background
services occasionally "wake up" to do useful things like check for new mail, connect to instant messaging servers,
check for application updates, scan for viruses, check whether a disk has been inserted into your CD drive in the last
100 nanoseconds, and so on. Before you start your timing tests, turn everything off and disconnect from the network.
Then turn off all the things you forgot to turn off the first time, then turn off the service that's incessantly checking
whether the network has come back yet, then ...

And then there's the matter of the variations introduced by the timing framework itself. Does the Python interpreter
cache method name lookups? Does it cache code block compilations? Regular expressions? Will your code have side
effects if run more than once? Don't forget that you're dealing with small fractions of a second, so small mistakes in
your timing framework will irreparably skew your results.

The Python community has a saying: "Python comes with batteries included." Don't write your own timing
framework. Python 2.3 comes with a perfectly good one called timeit.

Example 18.2. Introducing timeit

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython−examples−5.4.zip) used in this book.

>>> import timeit
>>> t = timeit.Timer("soundex.soundex('Pilgrim')",
... "import soundex")
>>> t.timeit()

Dive Into Python 249

http://www.avotaynu.com/soundex.html
http://diveintopython.org/download/diveintopython-examples-5.4.zip

8.21683733547
>>> t.repeat(3, 2000000)
[16.48319309109, 16.46128984923, 16.44203948912]

The timeit module defines one class, Timer, which takes two arguments. Both arguments are
strings. The first argument is the statement you wish to time; in this case, you are timing a call to the
Soundex function within the soundex with an argument of 'Pilgrim'. The second argument to the
Timer

http://docs.python.org/lib/node396.html
http://docs.python.org/lib/module-hotshot.html

How does soundex1a.py perform? For convenience, the __main__ section of the script contains this code that
calls the timeit module, sets up a timing test with three different names, tests each name three times, and displays
the minimum time for each:

if __name__ == '__main__':
 from timeit import Timer
 names = ('Woo', 'Pilgrim', 'Flingjingwaller')
 for name in names:
 statement = "soundex('%s')" % name
 t = Timer(statement, "from __main__ import soundex")
 print name.ljust(15), soundex(name), min(t.repeat())

So how does soundex1a.py perform with this regular expression?

C:\samples\soundex\stage1>

But is this the wrong path? The logic here is simple: the input source needs to be non−empty, and it needs to be
composed entirely of letters. Wouldn't it be faster to write a loop checking each character, and do away with regular
expressions altogether?

Here is soundex/stage1/soundex1d.py:

 if not source:
 return "0000"
 for c in source:
 if not ('A' <= c <= 'Z') and not ('a' <= c <= 'z'):
 return "0000"

It turns out that this technique in soundex1d.py is not faster than using a compiled regular expression (although it
is faster than using a non−compiled regular expression):

C:\samples\soundex\stage1>python soundex1d.py
Woo W000 15.4065058548
Pilgrim P426 22.2753567842
Flingjingwaller F452 37.5845122774

Why isn't soundex1d.py faster? The answer lies in the interpreted nature of Python. The regular expression engine
is written in C, and compiled to run natively on your computer. On the other hand, this loop is written in Python, and
runs through the Python interpreter. Even though the loop is relatively simple, it's not simple enough to make up for
the overhead of being interpreted. Regular expressions are never the right answer... except when they are.

It turns out that Python offers an obscure string method. You can be excused for not knowing about it, since it's never
been mentioned in this book. The method is called isalpha(), and it checks whether a string contains only letters.

This is soundex/stage1/soundex1e.py:

 if (not source) and (not source.isalpha()):
 return "0000"

How much did we gain by using this specific method in soundex1e.py? Quite a bit.

C:\samples\soundex\stage1>python soundex1e.py
Woo W000 13.5069504644
Pilgrim P426 18.2199394057
Flingjingwaller F452 28.9975225902

Example 18.3. Best Result So Far: soundex/stage1/soundex1e.py

import string, re

charToSoundex = {"A": "9",
 "B": "1",
 "C": "2",
 "D": "3",
 "E": "9",
 "F": "1",
 "G": "2",
 "H": "9",
 "I": "9",
 "J": "2",
 "K": "2",
 "L": "4",
 "M": "5",

Dive Into Python 252

 "N": "5",
 "O": "9",
 "P": "1",
 "Q": "2",
 "R": "6",
 "S": "2",
 "T": "3",
 "U": "9",
 "V": "1",
 "W": "9",
 "X": "2",
 "Y": "9",
 "Z": "2"}

def soundex(source):
 if (not source) and (not source.isalpha()):
 return "0000"
 source = source[0].upper() + source[1:]
 digits = source[0]
 for s in source[1:]:
 s = s.upper()
 digits += charToSoundex[s]
 digits2 = digits[0]
 for d in digits[1:]:
 if digits2[−1] != d:
 digits2 += d
 digits3 = re.sub('9', '', digits2)
 while len(digits3) < 4:
 digits3 += "0"
 return digits3[:4]

if __name__ == '__main__':
 from timeit import Timer
 names = ('Woo', 'Pilgrim', 'Flingjingwaller')
 for name in names:
 statement = "soundex('%s')" % name
 t = Timer(statement, "from __main__ import soundex")
 print name.ljust(15), soundex(name), min(t.repeat())

18.4. Optimizing Dictionary Lookups

The second step of the Soundex algorithm is to convert characters to digits in a specific pattern. What's the best way to
do this?

The most obvious solution is to define a dictionary with individual characters as keys and their corresponding digits as
values, and do dictionary lookups on each character. This is what we have in soundex/stage1/soundex1c.py
(the current best result so far):

charToSoundex = {"A": "9",
 "B": "1",
 "C": "2",
 "D": "3",
 "E": "9",
 "F": "1",
 "G": "2",
 "H": "9",
 "I": "9",
 "J": "2",
 "K": "2",
 "L": "4",
 "M": "5",

Dive Into Python 253

 "N": "5",
 "O": "9",
 "P": "1",
 "Q": "2",
 "R": "6",
 "S": "2",
 "T": "3",
 "U": "9",
 "V": "1",
 "W": "9",
 "X": "2",
 "Y": "9",
 "Z": "2"}

def soundex(source):
 # ... input check omitted for brevity ...
 source = source[0].upper() + source[1:]
 digits = source[0]
 for s in source[1:]:
 s = s.upper()
 digits += charToSoundex[s]

You timed soundex1c.py already; this is how it performs:

C:\samples\soundex\stage1>python soundex1c.py
Woo W000 14.5341678901
Pilgrim P426 19.2650071448
Flingjingwaller F452 30.1003563302

This code is straightforward, but is it the best solution? Calling upper() on each individual character seems
inefficient; it would probably be better to call upper() once on the entire string.

Then there's the matter of incrementally building the digits string. Incrementally building strings like this is
horribly inefficient; internally, the Python interpreter needs to create a new string each time through the loop, then
discard the old one.

Python is good at lists, though. It can treat a string as a list of characters automatically. And lists are easy to combine
into strings again, using the string method join().

Here is soundex/stage2/soundex2a.py, which converts letters to digits by using ¦ and lambda:

def soundex(source):
 # ...
 source = source.upper()
 digits = source[0] + "".join(map(lambda c: charToSoundex[c], source[1:]))

Surprisingly, soundex2a.py

 source = source.upper()
 digits = source[0] + "".join([charToSoundex[c] for c in source[1:]])

Using a list comprehension in soundex2b.py is faster than using ¦ and lambda in soundex2a.py, but still not
faster than the original code (incrementally building a string in soundex1c.py):

C:\samples\soundex\stage2>python soundex2b.py
Woo W000 13.4221324219
Pilgrim P426 16.4901234654
Flingjingwaller F452 25.8186157738

It's time for a radically different approach. Dictionary lookups are a general purpose tool. Dictionary keys can be any
length string (or many other data types), but in this case we are only dealing with single−character keys and
single−character values. It turns out that Python has a specialized function for handling exactly this situation: the
string.maketrans function.

This is soundex/stage2/soundex2c.py:

allChar = string.uppercase + string.lowercase
charToSoundex = string.maketrans(allChar, "91239129922455912623919292" * 2)
def soundex(source):
 # ...
 digits = source[0].upper() + source[1:].translate(charToSoundex)

What the heck is going on here? string.maketrans creates a translation matrix between two strings: the first
argument and the second argument. In this case, the first argument is the string
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz, and the second argument is the string
9123912992245591262391929291239129922455912623919292. See the pattern? It's the same
conversion pattern we were setting up longhand with a dictionary. A maps to 9, B maps to 1, C maps to 2, and so
forth. But it's not a dictionary; it's a specialized data structure that you can access using the string method
translate, which translates each character into the corresponding digit, according to the matrix defined by
string.maketrans.

timeit shows that soundex2c.py is significantly faster than defining a dictionary and looping through the input
and building the output incrementally:

C:\samples\soundex\stage2>python soundex2c.py
Woo W000 11.437645008
Pilgrim P426 13.2825062962
Flingjingwaller F452 18.5570110168

You're not going to get much better than that. Python has a specialized function that does exactly what you want to do;
use it and move on.

Example 18.4. Best Result So Far: soundex/stage2/soundex2c.py

import string, re

allChar = string.uppercase + string.lowercase
charToSoundex = string.maketrans(allChar, "91239129922455912623919292" * 2)
isOnlyChars = re.compile('^[A−Za−z]+$').search

def soundex(source):
 if not isOnlyChars(source):
 return "0000"
 digits = source[0].upper() + source[1:].translate(charToSoundex)

Dive Into Python 255

 digits2 = digits[0]
 for d in digits[1:]:
 if digits2[−1] != d:
 digits2 += d
 digits3 = re.sub('9', '', digits2)
 while len(digits3) < 4:
 digits3 += "0"
 return digits3[:4]

if __name__ == '__main__':
 from timeit import Timer
 names = ('Woo', 'Pilgrim', 'Flingjingwaller')
 for name in names:
 statement = "soundex('%s')" % name
 t = Timer(statement, "from __main__ import soundex")
 print name.ljust(15), soundex(name), min(t.repeat())

18.5. Optimizing List Operations

The third step in the Soundex algorithm is eliminating consecutive duplicate digits. What's the best way to do this?

Here's the code we have so far, in soundex/stage2/soundex2c.py:

 digits2 = digits[0]
 for d in digits[1:]:
 if digits2[−1] != d:
 digits2 += d

Here are the performance results for soundex2c.py:

C:\samples\soundex\stage2>python soundex2c.py
Woo W000 12.6070768771
Pilgrim P426 14.4033353401
Flingjingwaller F452 19.7774882003

The first thing to consider is whether it's efficient to check digits[−1] each time through the loop. Are list indexes
expensive? Would we be better off maintaining the last digit in a separate variable, and checking that instead?

To answer this question, here is soundex/stage3/soundex3a.py:

 digits2 = ''
 last_digit = ''
 for d in digits:
 if d != last_digit:
 digits2 += d
 last_digit = d

soundex3a.py does not run any faster than soundex2c.py, and may even be slightly slower (although it's not
enough of a difference to say for sure):

C:\samples\soundex\stage3>python soundex3a.py
Woo W000 11.5346048171
Pilgrim P426 13.3950636184
Flingjingwaller F452 18.6108927252

Why isn't soundex3a.py faster? It turns out that list indexes in Python are extremely efficient. Repeatedly
accessing digits2[−1] is no problem at all. On the other hand, manually maintaining the last seen digit in a
separate variable means we have two variable assignments for each digit we're storing, which wipes out any small

Dive Into Python 256

gains we might have gotten from eliminating the list lookup.

Let's try something radically different. If it's possible to treat a string as a list of characters, it should be possible to use
a list comprehension to iterate through the list. The problem is, the code needs access to the previous character in the
list, and that's not easy to do with a straightforward list comprehension.

However, it is possible to create a list of index numbers using the built−in range() function, and use those index
numbers to progressively search through the list and pull out each character that is different from the previous
character. That will give you a list of characters, and you can use the string method join() to reconstruct a string
from that.

Here is soundex/stage3/soundex3b.py:

 digits2 = "".join([digits[i] for i in range(len(digits))
 if i == 0 or digits[i−1] != digits[i]])

Is this faster? In a word, no.

C:\samples\soundex\stage3>python soundex3b.py
Woo W000 14.2245271396
Pilgrim P426 17.8337165757
Flingjingwaller F452 25.9954005327

It's possible that the techniques so far as have been "string−centric". Python can convert a string into a list of
characters with a single command: list('abc') returns ['a', 'b', 'c']. Furthermore, lists can be modified
in placeits−centr)ach cracring ourcng metho, whyasy tmov −13.2 Td(list, e, t". ss the ca strce)ng comman'abc?−13.2 Td(Let's H)Tj
/F0 11 Tf (soundex/stage3/soundex3b.py)Tc
/F4 11 Tf (:)Tj
/, whiraced

allChar = string.uppercase + string.lowercase
charToSoundex = string.maketrans(allChar, "91239129922455912623919292" * 2)
isOnlyChars = re.compile('^[A−Za−z]+$').search

def soundex(source):
 if not isOnlyChars(source):
 return "0000"
 digits = source[0].upper() + source[1:].translate(charToSoundex)
 digits2 = digits[0]
 for d in digits[1:]:
 if digits2[−1] != d:
 digits2 += d
 digits3 = re.sub('9', '', digits2)
 while len(digits3) < 4:
 digits3 += "0"
 return digits3[:4]

if __name__ == '__main__':
 from timeit import Timer
 names = ('Woo', 'Pilgrim', 'Flingjingwaller')
 for name in names:
 statement = "soundex('%s')" % name
 t = Timer(statement, "from __main__ import soundex")
 print name.ljust(15), soundex(name), min(t.repeat())

18.6. Optimizing String Manipulation

The final step of the Soundex algorithm is padding short results with zeros, and truncating long results. What is the
best way to do this?

This is what we have so far, taken from soundex/stage2/soundex2c.py:

 digits3 = re.sub('9', '', digits2)
 while len(digits3) < 4:
 digits3 += "0"
 return digits3[:4]

These are the results for soundex2c.py:

C:\samples\soundex\stage2>python soundex2c.py
Woo W000 12.6070768771
Pilgrim P426 14.4033353401
Flingjingwaller F452 19.7774882003

The first thing to consider is replacing that regular expression with a loop. This code is from
soundex/stage4/soundex4a.py:

 digits3 = ''
 for d in digits2:
 if d != '9':
 digits3 += d

Is soundex4a.py faster? Yes it is:

C:\samples\soundex\stage4>python soundex4a.py
Woo W000 6.62865531792
Pilgrim P426 9.02247576158
Flingjingwaller F452 13.6328416042

Dive Into Python 258

18.7. Summary

This chapter has illustrated several important aspects of performance tuning in Python, and performance tuning in
general.

If you need to choose between regular expressions and writing a loop, choose regular expressions. The regular
expression engine is compiled in C and runs natively on your computer; your loop is written in Python and
runs through the Python interpreter.

•

If you need to choose between regular expressions and string methods, choose string methods. Both are
compiled in C, so choose the simpler one.

•

General−purpose dictionary lookups are fast, but specialtiy functions such as string.maketrans and
string methods such as isalpha() are faster. If Python has a custom−tailored function for you, use it.

•

Don't be too clever. Sometimes the most obvious algorithm is also the fastest.•
Don't sweat it too much. Performance isn't everything.•

I can't emphasize that last point strongly enough. Over the course of this chapter, you made this function three times
faster and saved 20 seconds over 1 million function calls. Great. Now think: over the course of those million function
calls, how many seconds will your surrounding application wait for a database connection? Or wait for disk I/O? Or
wait for user input? Don't spend too much time over−optimizing one algorithm, or you'll ignore obvious
improvements somewhere else. Develop an instinct for the sort of code that Python runs well, correct obvious
blunders if you find them, and leave the rest alone.

Dive Into Python 260

Appendix A. Further reading
Chapter 1. Installing Python

Chapter 2. Your First Python Program

2.3. Documenting Functions

PEP 257 (http://www.python.org/peps/pep−0257.html) defines doc string conventions.♦
Python Style Guide (http://www.python.org/doc/essays/styleguide.html) discusses how to write a
good doc string.

♦

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses conventions for spacing in
doc strings
(http://www.python.org/doc/current/tut/node6.html#SECTION006750000000000000000).

♦

•

2.4.2. What's an Object?

Python Reference Manual (http://www.python.org/doc/current/ref/) explains exactly what it means to
say that everything in Python is an object (http://www.python.org/doc/current/ref/objects.html),
because some people are pedantic and like to discuss this sort of thing at great length.

♦

eff−bot (http://www.effbot.org/guides/) summarizes Python objects
(http://www.effbot.org/guides/python−objects.htm).

♦

•

2.5. Indenting Code

Python Reference Manual (http://www.python.org/doc/current/ref/) discusses cross−platform
indentation issues and shows various indentation errors
(http://www.python.org/doc/current/ref/indentation.html).

♦

Python Style Guide (http://www.python.org/doc/essays/styleguide.html) discusses good indentation
style.

♦

•

2.6. Testing Modules

Python Reference Manual (http://www.python.org/doc/current/ref/) discusses the low−level details of
importing modules (http://www.python.org/doc/current/ref/import.html).

♦

•

Chapter 3. Native Datatypes

3.1.3. Deleting Items From Dictionaries

How to Think Like a Computer Scientist (http://www.ibiblio.org/obp/thinkCSpy/) teaches about
dictionaries and shows how to use dictionaries to model sparse matrices
(http://www.ibiblio.org/obp/thinkCSpy/chap10.htm).

♦

Python Knowledge Base (http://www.faqts.com/knowledge−base/index.phtml/fid/199/) has a lot of
example code using dictionaries (http://www.faqts.com/knowledge−base/index.phtml/fid/541).

♦

Python Cookbook (http://www.activestate.com/ASPN/Python/Cookbook/) discusses how to sort the
values of a dictionary by key (http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52306).

♦

Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the dictionary
methods (http://www.python.org/doc/current/lib/typesmapping.html).

♦

•

3.2.5. Using List Operators

How to Think Like a Computer Scientist (http://www.ibiblio.org/obp/thinkCSpy/) teaches about lists
and makes an important point about passing lists as function arguments
(http://www.ibiblio.org/obp/thinkCSpy/chap08.htm).

♦

•

Dive Into Python 261

http://www.python.org/peps/pep-0257.html
http://www.python.org/doc/essays/styleguide.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node6.html#SECTION006750000000000000000
http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/objects.html
http://www.effbot.org/guides/
http://www.effbot.org/guides/python-objects.htm
http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/indentation.html
http://www.python.org/doc/essays/styleguide.html
http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/import.html
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap10.htm
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/541
http://www.activestate.com/ASPN/Python/Cookbook/
http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52306
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/typesmapping.html
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap08.htm

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) shows how to use lists as stacks and
queues (http://www.python.org/doc/current/tut/node7.html#SECTION007110000000000000000).

♦

Python Knowledge Base (http://www.faqts.com/knowledge−base/index.phtml/fid/199/) answers
common questions about lists (http://www.faqts.com/knowledge−base/index.phtml/fid/534) and has a
lot of example code using lists (http://www.faqts.com/knowledge−base/index.phtml/fid/540).

♦

Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the list methods
(http://www.python.org/doc/current/lib/typesseq−mutable.html).

♦

3.3. Introducing Tuples

How to Think Like a Computer Scientist (http://www.ibiblio.org/obp/thinkCSpy/) teaches about tuples
and shows how to concatenate tuples (http://www.ibiblio.org/obp/thinkCSpy/chap10.htm).

♦

Python Knowledge Base (http://www.faqts.com/knowledge−base/index.phtml/fid/199/) shows how to
sort a tuple (http://www.faqts.com/knowledge−base/view.phtml/aid/4553/fid/587).

♦

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) shows how to define a tuple with
one element
(http://www.python.org/doc/current/tut/node7.html#SECTION007300000000000000000).

♦

•

3.4.2. Assigning Multiple Values at Once

Python Reference Manual (http://www.python.org/doc/current/ref/) shows examples of when you can
skip the line continuation character (http://www.python.org/doc/current/ref/implicit−joining.html) and
when you need to use it (http://www.python.org/doc/current/ref/explicit−joining.html).

♦

How to Think Like a Computer Scientist (http://www.ibiblio.org/obp/thinkCSpy/) shows how to use
multi−variable assignment to swap the values of two variables
(http://www.ibiblio.org/obp/thinkCSpy/chap09.htm).

♦

•

3.5. Formatting Strings

Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the string
formatting format characters (http://www.python.org/doc/current/lib/typesseq−strings.html).

♦

Effective AWK Programming (http://www−gnats.gnu.org:8080/cgi−bin/info2www?(gawk)Top)
discusses all the format characters
(http://www−gnats.gnu.org:8080/cgi−bin/info2www?(gawk)Control+Letters) and advanced string
formatting techniques like specifying width, precision, and zero−padding
(http://www−gnats.gnu.org:8080/cgi−bin/info2www?(gawk)Format+Modifiers).

♦

•

3.6. Mapping Lists

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses another way to map lists
using the built−in map function
(http://www.python.org/doc/current/tut/node7.html#SECTION007130000000000000000).

♦

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) shows how to do nested list

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007110000000000000000
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/534
http://www.faqts.com/knowledge-base/index.phtml/fid/540
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/typesseq-mutable.html
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap10.htm
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/view.phtml/aid/4553/fid/587
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007300000000000000000
http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/implicit-joining.html
http://www.python.org/doc/current/ref/explicit-joining.html
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap09.htm
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/typesseq-strings.html
http://www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk)Top
http://www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk)Control+Letters
http://www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk)Format+Modifiers
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007130000000000000000
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007140000000000000000
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/480
http://www.faqts.com/knowledge-base/index.phtml/fid/539
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/string-methods.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-string.html
http://www.python.org/doc/FAQ.html

(http://www.python.org/cgi−bin/faqw.py?query=4.96&querytype=simple&casefold=yes&req=search)
instead of a list method.

Chapter 4. The Power Of Introspection

4.2. Using Optional and Named Arguments

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses exactly when and how
default arguments are evaluated
(http://www.python.org/doc/current/tut/node6.html#SECTION006710000000000000000), which
matters when the default value is a list or an expression with side effects.

♦

•

4.3.3. Built−In Functions

Python Library Reference (http://www.python.org/doc/current/lib/) documents all the built−in
functions (http://www.python.org/doc/current/lib/built−in−funcs.html) and all the built−in exceptions
(http://www.python.org/doc/current/lib/module−exceptions.html).

♦

•

4.5. Filtering Lists

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses another way to filter lists
using the built−in filter function
(http://www.python.org/doc/current/tut/node7.html#SECTION007130000000000000000).

♦

•

4.6.1. Using the and−or Trick

Python Cookbook (http://www.activestate.com/ASPN/Python/Cookbook/) discusses alternatives to
the and−or trick (http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52310).

♦

•

4.7.1. Real−World lambda Functions

Python Knowledge Base (http://www.faqts.com/knowledge−base/index.phtml/fid/199/) discusses
using lambda to call functions indirectly
(http://www.faqts.com/knowledge−base/view.phtml/aid/6081/fid/241).

♦

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) shows how to access outside
variables from inside a lambda function
(http://www.python.org/doc/current/tut/node6.html#SECTION006740000000000000000). (PEP 227
(http://python.sourceforge.net/peps/pep−0227.html) explains how this will change in future versions
of Python.)

♦

The Whole Python FAQ (http://www.python.org/doc/FAQ.html) has examples of obfuscated
one−liners using lambda
(http://www.python.org/cgi−bin/faqw.py?query=4.15&querytype=simple&casefold=yes&req=search).

♦

•

Chapter 5. Objects and Object−Orientation

5.2. Importing Modules Using from module import

eff−bot (http://www.effbot.org/guides/) has more to say on import module vs.from module
import (http://www.effbot.org/guides/import−confusion.htm).

♦

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses advanced import
techniques, including from module import *
(http://www.python.org/doc/current/tut/node8.html#SECTION008410000000000000000).

♦

•

5.3.2. Knowing When to Use self and __init__

Learning to Program (http://www.freenetpages.co.uk/hp/alan.gauld/) has a gentler introduction to
classes (http://www.freenetpages.co.uk/hp/alan.gauld/tutclass.htm).

♦

•

Dive Into Python 263

http://www.python.org/cgi-bin/faqw.py?query=4.96&querytype=simple&casefold=yes&req=search
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node6.html#SECTION006710000000000000000
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/built-in-funcs.html
http://www.python.org/doc/current/lib/module-exceptions.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007130000000000000000
http://www.activestate.com/ASPN/Python/Cookbook/
http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52310
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/view.phtml/aid/6081/fid/241
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node6.html#SECTION006740000000000000000
http://python.sourceforge.net/peps/pep-0227.html
http://www.python.org/doc/FAQ.html
http://www.python.org/cgi-bin/faqw.py?query=4.15&querytype=simple&casefold=yes&req=search
http://www.effbot.org/guides/
http://www.effbot.org/guides/import-confusion.htm
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node8.html#SECTION008410000000000000000
http://www.freenetpages.co.uk/hp/alan.gauld/
http://www.freenetpages.co.uk/hp/alan.gauld/tutclass.htm

How to Think Like a Computer Scientist (http://www.ibiblio.org/obp/thinkCSpy/) shows how to use
classes to model compound datatypes (http://www.ibiblio.org/obp/thinkCSpy/chap12.htm).

♦

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) has an in−depth look at classes,
namespaces, and inheritance (http://www.python.org/doc/current/tut/node11.html).

♦

Python Knowledge Base (http://www.faqts.com/knowledge−base/index.phtml/fid/199/) answers
common questions about classes (http://www.faqts.com/knowledge−base/index.phtml/fid/242).

♦

5.4.1. Garbage Collection

Python Library Reference (http://www.python.org/doc/current/lib/) summarizes built−in attributes
like __class__ (http://www.python.org/doc/current/lib/specialattrs.html).

♦

Python Library Reference (http://www.python.org/doc/current/lib/) documents the gc module
(http://www.python.org/doc/current/lib/module−gc.html), which gives you low−level control over
Python's garbage collection.

♦

•

5.5. Exploring UserDict: A Wrapper Class

Python Library Reference (http://www.python.org/doc/current/lib/) documents the UserDict
module (http://www.python.org/doc/current/lib/module−UserDict.html) and the copy module
(http://www.python.org/doc/current/lib/module−copy.html).

♦

•

5.7. Advanced Special Class Methods

Python Reference Manual (http://www.python.org/doc/current/ref/) documents all the special class
methods (http://www.python.org/doc/current/ref/specialnames.html).

♦

•

5.9. Private Functions

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses the inner workings of
private variables
(http://www.python.org/doc/current/tut/node11.html#SECTION0011600000000000000000).

♦

•

Chapter 6. Exceptions and File Handling

6.1.1. Using Exceptions For Other Purposes

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses defining and raising your
own exceptions, and handling multiple exceptions at once
(http://www.python.org/doc/current/tut/node10.html#SECTION0010400000000000000000).

♦

Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the built−in
exceptions (http://www.python.org/doc/current/lib/module−exceptions.html).

♦

Python Library Reference (http://www.python.org/doc/current/lib/) documents the getpass
(http://www.python.org/doc/current/lib/module−getpass.html) module.

♦

Python Library Reference (http://www.python.org/doc/current/lib/) documents the traceback
module (http://www.python.org/doc/current/lib/module−traceback.html), which provides low−level
access to exception attributes after an exception is raised.

♦

Python Reference Manual (http://www.python.org/doc/current/ref/) discusses the inner workings of
the try...except block (http://www.python.org/doc/current/ref/try.html).

♦

•

6.2.4. Writing to Files

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses reading and writing files,
including how to read a file one line at a time into a list
(http://www.python.org/doc/current/tut/node9.html#SECTION009210000000000000000).

♦

eff−bot (http://www.effbot.org/guides/) discusses efficiency and performance of various ways of
reading a file (http://www.effbot.org/guides/readline−performance.htm).

♦

Python Knowledge Base (http://www.faqts.com/knowledge−base/index.phtml/fid/199/) answers♦

•

http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap12.htm
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node11.html
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/242
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/specialattrs.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-gc.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-UserDict.html
http://www.python.org/doc/current/lib/module-copy.html
http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/specialnames.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node11.html#SECTION0011600000000000000000
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node10.html#SECTION0010400000000000000000
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-exceptions.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-getpass.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-traceback.html
http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/try.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node9.html#SECTION009210000000000000000
http://www.effbot.org/guides/
http://www.effbot.org/guides/readline-performance.htm
http://www.faqts.com/knowledge-base/index.phtml/fid/199/

common questions about files (http://www.faqts.com/knowledge−base/index.phtml/fid/552).
Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the file object
methods (http://www.python.org/doc/current/lib/bltin−file−objects.html).

♦

6.4. Using sys.modules

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses exactly when and how
default arguments are evaluated
(http://www.python.org/doc/current/tut/node6.html#SECTION006710000000000000000).

♦

Python Library Reference (http://www.python.org/doc/current/lib/) documents the sys
(http://www.python.org/doc/current/lib/module−sys.html) module.

♦

•

6.5. Working with Directories

Python Knowledge Base (http://www.faqts.com/knowledge−base/index.phtml/fid/199/) answers
questions about the os module (http://www.faqts.com/knowledge−base/index.phtml/fid/240).

♦

Python Library Reference (http://www.python.org/doc/current/lib/) documents the os
(http://www.python.org/doc/current/lib/module−os.html) module and the os.path
(http://www.python.org/doc/current/lib/module−os.path.html) module.

♦

•

Chapter 7. Regular Expressions

7.6. Case study: Parsing Phone Numbers

Regular Expression HOWTO (http://py−howto.sourceforge.net/regex/regex.html) teaches about
regular expressions and how to use them in Python.

♦

Python Library Reference (http://www.python.org/doc/current/lib/) summarizes the re module
(http://www.python.org/doc/current/lib/module−re.html).

♦

•

Chapter 8. HTML Processing

8.4. Introducing BaseHTMLProcessor.py

W3C (http://www.w3.org/) discusses character and entity references
(http://www.w3.org/TR/REC−html40/charset.html#entities).

♦

Python Library Reference (http://www.python.org/doc/current/lib/) confirms your suspicions that the
htmlentitydefs module (http://www.python.org/doc/current/lib/module−htmlentitydefs.html) is
exactly what it sounds like.

♦

•

8.9. Putting it all together

You thought I was kidding about the server−side scripting idea. So did I, until I found this web−based
dialectizer (http://rinkworks.com/dialect/). Unfortunately, source code does not appear to be available.

♦

•

Chapter 9. XML Processing

9.4. Unicode

Unicode.org (http://www.unicode.org/) is the home page of the unicode standard, including a brief
technical introduction (http://www.unicode.org/standard/principles.html).

♦

Unicode Tutorial (http://www.reportlab.com/i18n/python_unicode_tutorial.html) has some more
examples of how to use Python's unicode functions, including how to force Python to coerce unicode
into ASCII even when it doesn't really want to.

♦

PEP 263 (http://www.python.org/peps/pep−0263.html) goes into more detail about how and when to
define a character encoding in your .py files.

♦

•

Dive Into Python 265

http://www.faqts.com/knowledge-base/index.phtml/fid/552
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/bltin-file-objects.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node6.html#SECTION006710000000000000000
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-sys.html
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/240
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-os.html
http://www.python.org/doc/current/lib/module-os.path.html
http://py-howto.sourceforge.net/regex/regex.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-re.html
http://www.w3.org/
http://www.w3.org/TR/REC-html40/charset.html#entities
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-htmlentitydefs.html
http://rinkworks.com/dialect/
http://www.unicode.org/
http://www.unicode.org/standard/principles.html
http://www.reportlab.com/i18n/python_unicode_tutorial.html
http://www.python.org/peps/pep-0263.html

Chapter 10. Scripts and Streams

Chapter 11. HTTP Web Services

11.1. Diving in

Paul Prescod believes that pure HTTP web services are the future of the Internet
(http://webservices.xml.com/pub/a/ws/2002/02/06/rest.html).

♦

•

Chapter 12. SOAP Web Services

12.1. Diving In

http://www.xmethods.net/ is a repository of public access SOAP web services.♦
The SOAP specification (http://www.w3.org/TR/soap/) is surprisingly readable, if you like that sort of
thing.

♦

•

12.8. Troubleshooting SOAP Web Services

New developments for SOAPpy
(http://www−106.ibm.com/developerworks/webservices/library/ws−pyth17.html) steps through trying
to connect to another SOAP service that doesn't quite work as advertised.

♦

•

Chapter 13. Unit Testing

13.1. Introduction to Roman numerals

This site (http://www.wilkiecollins.demon.co.uk/roman/front.htm) has more on Roman numerals,
including a fascinating history (http://www.wilkiecollins.demon.co.uk/roman/intro.htm) of how
Romans and other civilizations really used them (short answer: haphazardly and inconsistently).

♦

•

13.3. Introducing romantest.py

The PyUnit home page (http://pyunit.sourceforge.net/) has an in−depth discussion of using the
unittest framework (http://pyunit.sourceforge.net/pyunit.html), including advanced features not
covered in this chapter.

♦

The PyUnit FAQ (http://pyunit.sourceforge.net/pyunit.html) explains why test cases are stored
separately (http://pyunit.sourceforge.net/pyunit.html#WHERE) from the code they test.

♦

Python Library Reference (http://www.python.org/doc/current/lib/) summarizes the unittest
(http://www.python.org/doc/current/lib/module−unittest.html) module.

♦

ExtremeProgramming.org (http://www.extremeprogramming.org/) discusses why you should write
unit tests (http://www.extremeprogramming.org/rules/unittests.html).

♦

The Portland Pattern Repository (http://www.c2.com/cgi/wiki) has an ongoing discussion of unit tests
(http://www.c2.com/cgi/wiki?UnitTests), including a standard definition
(http://www.c2.com/cgi/wiki?StandardDefinitionOfUnitTest), why you should code unit tests first
(http://www.c2.com/cgi/wiki?CodeUnitTestFirst), and several in−depth case studies
(http://www.c2.com/cgi/wiki?UnitTestTrial).

♦

•

Chapter 14. Test−First Programming

Chapter 15. Refactoring

15.5. Summary•

Dive Into Python 266

http://webservices.xml.com/pub/a/ws/2002/02/06/rest.html
http://www.xmethods.net/
http://www.w3.org/TR/soap/
http://www-106.ibm.com/developerworks/webservices/library/ws-pyth17.html
http://www.wilkiecollins.demon.co.uk/roman/front.htm
http://www.wilkiecollins.demon.co.uk/roman/intro.htm
http://pyunit.sourceforge.net/
http://pyunit.sourceforge.net/pyunit.html
http://pyunit.sourceforge.net/pyunit.html
http://pyunit.sourceforge.net/pyunit.html#WHERE
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-unittest.html
http://www.extremeprogramming.org/
http://www.extremeprogramming.org/rules/unittests.html
http://www.c2.com/cgi/wiki
http://www.c2.com/cgi/wiki?UnitTests
http://www.c2.com/cgi/wiki?StandardDefinitionOfUnitTest
http://www.c2.com/cgi/wiki?CodeUnitTestFirst
http://www.c2.com/cgi/wiki?UnitTestTrial

XProgramming.com (http://www.xprogramming.com/) has links to download unit testing frameworks
(http://www.xprogramming.com/software.htm) for many different languages.

♦

Chapter 16. Functional Programming

Chapter 17. Dynamic functions

17.7. plural.py, stage 6

PEP 255 (http://www.python.org/peps/pep−0255.html) defines generators.♦
Python Cookbook (http://www.activestate.com/ASPN/Python/Cookbook/) has many more examples
of generators (http://www.google.com/search?q=generators+cookbook+site:aspn.activestate.com).

♦

•

Chapter 18. Performance Tuning

18.1. Diving in

Soundexing and Genealogy (http://www.avotaynu.com/soundex.html) gives a chronology of the
evolution of the Soundex and its regional variations.

♦

•

Dive Into Python 267

http://www.xprogramming.com/
http://www.xprogramming.com/software.htm
http://www.python.org/peps/pep-0255.html
http://www.activestate.com/ASPN/Python/Cookbook/
http://www.google.com/search?q=generators+cookbook+site:aspn.activestate.com
http://www.avotaynu.com/soundex.html

http://www.python.org/ftp/python/
http://www.python.org/ftp/python/

You can document a Python function by giving it a doc string.
2.4. Everything Is an Object

A function, like everything else in Python, is an object.

•

2.5. Indenting Code

Python functions have no explicit begin or end, and no curly braces to mark where the
function code starts and stops. The only delimiter is a colon (:) and the indentation of the
code itself.

•

2.6. Testing Modules

Python modules are objects and have several useful attributes. You can use this to easily test
your modules as you write them. Here's an example that uses the if__name__ trick.

4.1. Diving In

Here is a complete, working Python program. You should understand a good deal about it just
by looking at it. The numbered lines illustrate concepts covered in Chapter 2, Your First
Python Program. Don't worry if the rest of the code looks intimidating; you'll learn all about
it throughout this chapter.

•

4.2. Using Optional and Named Arguments

Python allows function arguments to have default values; if the function is called without the
argument, the argument gets its default value. Futhermore, arguments can be specified in any
order by using named arguments. Stored procedures in SQL Server Transact/SQL can do this,
so if you're a SQL Server scripting guru, you can skim this part.

•

4.3. Using type, str, dir, and Other Built−In Functions

Python has a small set of extremely useful built−in functions. All other functions are
partitioned off into modules. This was actually a conscious design decision, to keep the core
language from getting bloated like other scripting languages (cough cough, Visual Basic).

•

4.4. Getting Object References With getattr

You already know that Python functions are objects. What you don't know is that you can get
a reference to a function without knowing its name until run−time, by using the getattr
function.

•

4.5. Filtering Lists

As you know, Python has powerful capabilities for mapping lists into other lists, via list
comprehensions (Section 3.6, �Mapping Lists�). This can be combined with a filtering
mechanism, where some elements in the list are mapped while others are skipped entirely.

•

4.6. The Peculiar Nature of and and or

In Python, and and or perform boolean logic as you would expect, but they do not return
boolean values; instead, they return one of the actual values they are comparing.

•

4.7. Using lambda Functions

Python supports an interesting syntax that lets you define one−line mini−functions on the fly.
Borrowed from Lisp, these so−called lambda functions can be used anywhere a function is
required.

•

4.8. Putting It All Together

The last line of code, the only one you haven't deconstructed yet, is the one that does all the
work. But by now the work is easy, because everything you need is already set up just the
way you need it. All the dominoes are in place; it's time to knock them down.

•

4.9. Summary

The apihelper.py program and its output should now make perfect sense.

•

Chapter 5. Objects and Object−Orientation

5.1. Diving In

Here is a complete, working Python program. Read the doc strings of the module, the
classes, and the functions to get an overview of what this program does and how it works. As
usual, don't worry about the stuff you don't understand; that's what the rest of the chapter is

•

Dive Into Python 270

for.
5.2. Importing Modules Using from module import

Python has two ways of importing modules. Both are useful, and you should know when to
use each. One way, import module, you've already seen in Section 2.4, �Everything Is an
Object�. The other way accomplishes the same thing, but it has subtle and important
differences.

•

5.3. Defining Classes

Python is fully object−oriented: you can define your own classes, inherit from your own or
built−in classes, and instantiate the classes you've defined.

•

5.4. Instantiating Classes

Instantiating classes in Python is straightforward. To instantiate a class, simply call the class
as if it were a function, passing the arguments that the __init__ method defines. The return
value will be the newly created object.

•

5.5. Exploring UserDict: A Wrapper Class

As you've seen, FileInfo is a class that acts like a dictionary. To explore this further, let's
look at the UserDict class in the UserDict module, which is the ancestor of the
FileInfo class. This is nothing special; the class is written in Python and stored in a .py
file, just like any other Python code. In particular, it's stored in the lib directory in your
Python installation.

•

5.6. Special Class Methods

In addition to normal class methods, there are a number of special methods that Python
classes can define. Instead of being called directly by your code (like normal methods),
special methods are called for you by Python in particular circumstances or when specific
syntax is used.

•

5.7. Advanced Special Class Methods

Python has more special methods than just __getitem__ and __setitem__. Some of
them let you emulate functionality that you may not even know about.

•

5.8. Introducing Class Attributes

You already know about data attributes, which are variables owned by a specific instance of a
class. Python also supports class attributes, which are variables owned by the class itself.

•

5.9. Private Functions

Unlike in most languages, whether a Python function, method, or attribute is private or public
is determined entirely by its name.

•

5.10. Summary

That's it for the hard−core object trickery. You'll see a real−world application of special class
methods in Chapter 12, which uses getattr to create a proxy to a remote web service.

•

Chapter 6. Exceptions and File Handling

6.1. Handling Exceptions

Like many other programming languages, Python has exception handling via
try...except blocks.

•

Dive Into Python 271

some people find more readable. First look at the method we already used in the previous
example.

7.5. Verbose Regular Expressions

So far you've just been dealing with what I'll call "compact" regular expressions. As you've
seen, they are difficult to read, and even if you figure out what one does, that's no guarantee
that you'll be able to understand it six months later. What you really need is inline
documentation.

•

7.6. Case study: Parsing Phone Numbers

So far you've concentrated on matching whole patterns. Either the pattern matches, or it
doesn't. But regular expressions are much more powerful than that. When a regular
expression does match, you can pick out specific pieces of it. You can find out what matched
where.

•

7.7. Summary

This is just the tiniest tip of the iceberg of what regular expressions can do. In other words,
even though you're completely overwhelmed by them now, believe me, you ain't seen nothing
yet.

•

Chapter 8. HTML Processing

8.1. Diving in

I often see questions on comp.lang.python
(http://groups.google.com/groups?group=comp.lang.python) like "How can I list all the
[headers|images|links] in my HTML document?" "How do I parse/translate/munge the text of
my HTML document but leave the tags alone?" "How can I add/remove/quote attributes of all
my HTML tags at once?" This chapter will answer all of these questions.

•

8.2. Introducing sgmllib.py

HTML processing is broken into three steps: breaking down the HTML into its constituent
pieces, fiddling with the pieces, and reconstructing the pieces into HTML again. The first step
is done by sgmllib.py, a part of the standard Python library.

•

8.3. Extracting data from HTML documents

To extract data from HTML documents, subclass the SGMLParser class and define methods
for each tag or entity you want to capture.

•

8.4. Introducing BaseHTMLProcessor.py

SGMLParser doesn't produce anything by itself. It parses and parses and parses, and it calls
a method for each interesting thing it finds, but the methods don't do anything. SGMLParser
is an HTML consumer

http://groups.google.com/groups?group=comp.lang.python

dictionary−based access to local and global variables.
8.6. Dictionary−based string formatting

There is an alternative form of string formatting that uses dictionaries instead of tuples of
values.

•

8.7. Quoting attribute values

A common question on comp.lang.python
(http://groups.google.com/groups?group=comp.lang.python) is "I have a bunch of HTML
documents with unquoted attribute values, and I want to properly quote them all. How can I
do this?"[4] (This is generally precipitated by a project manager who has found the
HTML−is−a−standard religion joining a large project and proclaiming that all pages must

http://groups.google.com/groups?group=comp.lang.python

Traversing XML documents by stepping through each node can be tedious. If you're looking
for something in particular, buried deep within your XML document, there is a shortcut you
can use to find it quickly: getElementsByTagName.

9.6. Accessing element attributes

XML elements can have one or more attributes, and it is incredibly simple to access them
once you have parsed an XML document.

•

9.7. Segue

OK, that's it for the hard−core XML stuff. The next chapter will continue to use these same
example programs, but focus on other aspects that make the program more flexible: using
streams for input processing, using getattr for method dispatching, and using
command−line flags to allow users to reconfigure the program without changing the code.

•

Chapter 10. Scripts and Streams

10.1. Abstracting input sources

One of Python's greatest strengths is its dynamic binding, and one powerful use of dynamic
binding is the file−like object.

•

10.2. Standard input, output, and error

UNIX users are already familiar with the concept of standard input, standard output, and
standard error. This section is for the rest of you.

•

10.3. Caching node lookups

kgp.py employs several tricks which may or may not be useful to you in your XML
processing. The first one takes advantage of the consistent structure of the input documents to
build a cache of nodes.

•

10.4. Finding direct children of a node

Another useful techique when parsing XML documents is finding all the direct child elements
of a particular element. For instance, in the grammar files, a ref element can have several p
elements, each of which can contain many things, including other p elements. You want to
find just the p elements that are children of the ref, not p elements that are children of other
p elements.

•

10.5. Creating separate handlers by node type

The third useful XML processing tip involves separating your code into logical functions,
based on node types and element names. Parsed XML documents are made up of various
types of nodes, each represented by a Python object. The root level of the document itself is
represented by a Document object. The Document then contains one or more Element
objects (for actual XML tags), each of which may contain other Element objects, Text
objects (for bits of text), or Comment objects (for embedded comments). Python makes it
easy to write a dispatcher to separate the logic for each node type.

•

10.6. Handling command−line arguments

Python fully supports creating programs that can be run on the command line, complete with
command−line arguments and either short− or long−style flags to specify various options.
None of this is XML−specific, but this script makes good use of command−line processing,
so it seemed like a good time to mention it.

•

10.7. Putting it all together•

Dive Into Python 275

You've covered a lot of ground. Let's step back and see how all the pieces fit together.
10.8. Summary

Python comes with powerful libraries for parsing and manipulating XML documents. The
minidom takes an XML file and parses it into Python objects, providing for random access
to arbitrary elements. Furthermore, this chapter shows how Python can be used to create a
"real" standalone command−line script, complete with command−line flags, command−line
arguments, error handling, even the ability to take input from the piped result of a previous
program.

•

Chapter 11. HTTP Web Services

11.1. Diving in

You've learned about HTML processing and XML processing, and along the way you saw
how to download a web page and how to parse XML from a URL, but let's dive into the more
general topic of HTTP web services.

•

11.2. How not to fetch data over HTTP

Let's say you want to download a resource over HTTP, such as a syndicated Atom feed. But
you don't just want to download it once; you want to download it over and over again, every
hour, to get the latest news from the site that's offering the news feed. Let's do it the
quick−and−dirty way first, and then see how you can do better.

•

11.3. Features of HTTP

There are five important features of HTTP which you should support.

•

11.4. Debugging HTTP web services

First, let's turn on the debugging features of Python's HTTP library and see what's being sent
over the wire. This will be useful throughout the chapter, as you add more and more features.

•

11.5. Setting the User−Agent

The first step to improving your HTTP web services client is to identify yourself properly
with a User−Agent

how they all fit together.
11.10. Summary

The openanything.py and its functions should now make perfect sense.

•

Chapter 12. SOAP Web Services

12.1. Diving In

You use Google, right? It's a popular search engine. Have you ever wished you could
programmatically access Google search results? Now you can. Here is a program to search
Google from Python.

•

12.2. Installing the SOAP Libraries

Unlike the other code in this book, this chapter relies on libraries that do not come
pre−installed with Python.

•

12.3. First Steps with SOAP

The heart of SOAP is the ability to call remote functions. There are a number of public access
SOAP servers that provide simple functions for demonstration purposes.

•

12.4. Debugging SOAP Web Services

The SOAP libraries provide an easy way to see what's going on behind the scenes.

•

12.5. Introducing WSDL

The SOAPProxy class proxies local method calls and transparently turns then into
invocations of remote SOAP methods. As you've seen, this is a lot of work, and SOAPProxy
does it quickly and transparently. What it doesn't do is provide any means of method
introspection.

•

12.6. Introspecting SOAP Web Services with WSDL

Like many things in the web services arena, WSDL has a long and checkered history, full of
political strife and intrigue. I will skip over this history entirely, since it bores me to tears.
There were other standards that tried to do similar things, but WSDL won, so let's learn how
to use it.

•

12.7. Searching Google

Let's finally turn to the sample code that you saw that the beginning of this chapter, which
does something more useful and exciting than get the current temperature.

•

12.8. Troubleshooting SOAP Web Services

Of course, the world of SOAP web services is not all happiness and light. Sometimes things
go wrong.

•

12.9. Summary

SOAP web services are very complicated. The specification is very ambitious and tries to
cover many different use cases for web services. This chapter has touched on some of the
simpler use cases.

•

Chapter 13. Unit Testing

13.1. Introduction to Roman numerals•

Dive Into Python 277

In previous chapters, you "dived in" by immediately looking at code and trying to understand
it as quickly as possible. Now that you have some Python under your belt, you're going to
step back and look at the steps that happen before the code gets written.

13.2. Diving in

Now that you've completely defined the behavior you expect from your conversion functions,
you're going to do something a little unexpected: you're going to write a test suite that puts
these functions through their paces and makes sure that they behave the way you want them
to. You read that right: you're going to write code that tests code that you haven't written yet.

•

13.3. Introducing romantest.py

This is the complete test suite for your Roman numeral conversion functions, which are yet to
be written but will eventually be in roman.py. It is not immediately obvious how it all fits
together; none of these classes or methods reference any of the others. There are good reasons
for this, as you'll see shortly.

•

13.4. Testing for success

The most fundamental part of unit testing is constructing individual test cases. A test case
answers a single question about the code it is testing.

•

13.5. Testing for failure

It is not enough to test that functions succeed when given good input; you must also test that
they fail when given bad input. And not just any sort of failure; they must fail in the way you
expect.

•

13.6. Testing for sanity

Often, you will find that a unit of code contains a set of reciprocal functions, usually in the
form of conversion functions where one converts A to B and the other converts B to A. In
these cases, it is useful to create a "sanity check" to make sure that you can convert A to B
and back to A without losing precision, incurring rounding errors, or triggering any other sort
of bug.

•

Chapter 14. Test−First Programming

14.1. roman.py, stage 1

Now that the unit tests are complete, it's time to start writing the code that the test cases are
attempting to test. You're going to do this in stages, so you can see all the unit tests fail, then
watch them pass one by one as you fill in the gaps in roman.py.

•

14.2. roman.py, stage 2

Now that you have the framework of the roman module laid out, it's time to start writing
code and passing test cases.

•

14.3. roman.py, stage 3

Now that toRoman behaves correctly with good input (integers from 1 to 3999), it's time to
make it behave correctly with bad input (everything else).

•

14.4. roman.py, stage 4

Now that toRoman is done, it's time to start coding fromRoman. Thanks to the rich data
structure that maps individual Roman numerals to integer values, this is no more difficult than
the toRoman function.

•

Dive Into Python 278

In Chapter 13, Unit Testing, you learned about the philosophy of unit testing. In Chapter 14,
Test−First Programming, you stepped through the implementation of basic unit tests in
Python. In Chapter 15, Refactoring, you saw how unit testing makes large−scale refactoring
easier. This chapter will build on those sample programs, but here we will focus more on
advanced Python−specific techniques, rather than on unit testing itself.

16.2. Finding the path

When running Python scripts from the command line, it is sometimes useful to know where
the currently running script is located on disk.

•

16.3. Filtering lists revisited

You're already familiar with using list comprehensions to filter lists. There is another way to
accomplish this same thing, which some people feel is more expressive.

•

16.4. Mapping lists revisited

You're already familiar with using list comprehensions to map one list into another. There is
another way to accomplish the same thing, using the built−in map function. It works much
the same way as the filter function.

•

16.5. Data−centric programming

By now you're probably scratching your head wondering why this is better than using for
loops and straight function calls. And that's a perfectly valid question. Mostly, it's a matter of
perspective. Using map and filter forces you to center your thinking around your data.

•

16.6. Dynamically importing modules

OK, enough philosophizing. Let's talk about dynamically importing modules.

•

16.7. Putting it all together

You've learned enough now to deconstruct the first seven lines of this chapter's code sample:
reading a directory and importing selected modules within it.

•

16.8. Summary

The regression.py program and its output should now make perfect sense.

•

Chapter 17. Dynamic functions

17.1. Diving in

I want to talk about plural nouns. Also, functions that return other functions, advanced regular
expressions, and generators. Generators are new in Python 2.3. But first, let's talk about how
to make plural nouns.

•

17.2. plural.py, stage 1

So you're looking at words, which at least in English are strings of characters. And you have
rules that say you need to fi6.4l1iffre t tompbintion of characters. and gher di deiffre t Tj
0 −13.2 Td(ehing, to fherm This csund loie pa jobfocrretular) xpressions,

•

Defining separate named functions for each match and apply rule isn't really necessary. You
never call them directly; you define them in the rules list and call them through there. Let's
streamline the rules definition by anonymizing those functions.

17.5. plural.py, stage 4

Let's factor out the duplication in the code so that defining new rules can be easier.

•

17.6. plural.py, stage 5

You've factored out all the duplicate code and added enough abstractions so that the
pluralization rules are defined in a list of strings. The next logical step is to take these strings
and put them in a separate file, where they can be maintained separately from the code that
uses them.

•

17.7. plural.py, stage 6

Now you're ready to talk about generators.

•

17.8. Summary

You talked about several different advanced techniques in this chapter. Not all of them are
appropriate for every situation.

•

• a6.43.owfiniony arate namy situation.

•

• 17 Λοοκυπαα κο θηε νεξΤϕ
3φ σ σεχο −1ξτ λορ. Νοτ Σουνδεξααλγοριδηανδιχαλ χο ριατυεσ ενου ττντο διγιτδ τεχα σπεχιφιχα κο−ηατ τηε

•

•

• 17.8. Συµµαρψ

8ιερ.

Appendix C. Tips and tricks
Chapter 1. Installing Python

Chapter 2. Your First Python Program

2.1. Diving in

In the ActivePython IDE on Windows, you can run the Python program you're editing by choosing
File−>Run... (Ctrl−R). Output is displayed in the interactive window.

In the Python IDE on Mac OS, you can run a Python program with Python−>Run window... (Cmd−R), but
there is an important option you must set first. Open the .py file in the IDE, pop up the options menu by
clicking the black triangle in the upper−right corner of the window, and make sure the Run as __main__
option is checked. This is a per−file setting, but you'll only need to do it once per file.

On UNIX−compatible systems (including Mac OS X), you can run a Python program from the command
line: python odbchelper.py

•

2.2. Declaring Functions

In Visual Basic, functions (that return a value) start with function, and subroutines (that do not return a
value) start with sub. There are no subroutines in Python. Everything is a function, all functions return a
value (even if it's None), and all functions start with def.

In Java, C++, and other statically−typed languages, you must specify the datatype of the function return
value and each function argument. In Python, you never explicitly specify the datatype of anything. Based on
what value you assign, Python keeps track of the datatype internally.

•

2.3. Documenting Functions

Triple quotes are also an easy way to define a string with both single and double quotes, like qq/.../ in
Perl.

Many Python IDEs use the doc string to provide context−sensitive documentation, so that when you
type a function name, its doc string appears as a tooltip. This can be incredibly helpful, but it's only as
good as the doc strings you write.

•

2.4. Everything Is an Object

import in Python is like require in Perl. Once you import a Python module, you access its functions
with module.function; once you require a Perl module, you access its functions with
module::function.

•

2.5. Indenting Code

Python uses carriage returns to separate statements and a colon and indentation to separate code blocks. C++
and Java use semicolons to separate statements and curly braces to separate code blocks.

•

2.6. Testing Modules

Like C, Python uses == for comparison and = for assignment. Unlike C, Python does not support in−line
assignment, so there's no chance of accidentally assigning the value you thought you were comparing.

On MacPython, there is an additional step to make the if__name__ trick work. Pop up the module's
options menu by clicking the black triangle in the upper−right corner of the window, and make sure Run as
__main__ is checked.

•

Chapter 3. Native Datatypes

3.1. Introducing Dictionaries•

Dive Into Python 282

A dictionary in Python is like a hash in Perl. In Perl, variables that store hashes always start with a %
character. In Python, variables can be named anything, and Python keeps track of the datatype internally.

A dictionary in Python is like an instance of the Hashtable class in Java.

A dictionary in Python is like an instance of the Scripting.Dictionary object in Visual Basic.
3.1.2. Modifying Dictionaries

Dictionaries have no concept of order among elements. It is incorrect to say that the elements are "out of
order"; they are simply unordered. This is an important distinction that will annoy you when you want to
access the elements of a dictionary in a specific, repeatable order (like alphabetical order by key). There are
ways of doing this, but they're not built into the dictionary.

•

3.2. Introducing Lists

A list in Python is like an array in Perl. In Perl, variables that store arrays always start with the @ character;
in Python, variables can be named anything, and Python keeps track of the datatype internally.

A list in Python is much more than an array in Java (although it can be used as one if that's really all you
want out of life). A better analogy would be to the ArrayList class, which can hold arbitrary objects and
can expand dynamically as new items are added.

•

3.2.3. Searching Lists

Before version 2.2.1, Python had no separate boolean datatype. To compensate for this, Python accepted
almost anything in a boolean context (like an if statement), according to the following rules:

0 is false; all other numbers are true.♦
An empty string ("") is false, all other strings are true.♦
An empty list ([]) is false; all other lists are true.♦
An empty tuple (()) is false; all other tuples are true.♦
An empty dictionary ({}) is false; all other dictionaries are true.♦

These rules still apply in Python 2.2.1 and beyond, but now you can also use an actual boolean, which has a
value of True or False. Note the capitalization; these values, like everything else in Python, are
case−sensitive.

•

3.3. Introducing Tuples

Tuples can be converted into lists, and vice−versa. The built−in tuple function takes a list and returns a
tuple with the same elements, and the list function takes a tuple and returns a list. In effect, tuple
freezes a list, and list thaws a tuple.

•

3.4. Declaring variables

When a command is split among several lines with the line−continuation marker ("\"), the continued lines
can be indented in any manner; Python's normally stringent indentation rules do not apply. If your Python
IDE auto−indents the continued line, you should probably accept its default unless you have a burning reason
not to.

•

3.5. Formatting Strings

String formatting in Python uses the same syntax as the sprintf function in C.

•

3.7. Joining Lists and Splitting Strings

join

The only thing you need to do to call a function is specify a value (somehow) for each required argument; the
manner and order in which you do that is up to you.
4.3.3. Built−In Functions

Python comes with excellent reference manuals, which you should peruse thoroughly to learn all the modules
Python has to offer. But unlike most languages, where you would find yourself referring back to the manuals
or man pages to remind yourself how to use these modules, Python is largely self−documenting.

•

4.7. Using lambda Functions

lambda functions are a matter of style. Using them is never required; anywhere you could use them, you
could define a separate normal function and use that instead. I use them in places where I want to encapsulate
specific, non−reusable code without littering my code with a lot of little one−line functions.

•

4.8. Putting It All Together

In SQL, you must use IS NULL instead of = NULL to compare a null value. In Python, you can use either
== None or is None, but is None is faster.

•

Chapter 5. Objects and Object−Orientation

5.2. Importing Modules Using from module import

from module import * in Python is like use module in Perl; import module in Python is like
require module in Perl.

from module import * in Python is like import module.* in Java; import module in Python
is like import module in Java.

Use from module import * sparingly, because it makes it difficult to determine where a particular
function or attribute came from, and that makes debugging and refactoring more difficult.

•

5.3. Defining Classes

The pass statement in Python is like an empty set of braces ({}) in Java or C.

In Python, the ancestor of a class is simply listed in parentheses immediately after the class name. There is
no special keyword like extends in Java.

 ωλ. 5.1τηεσεσ ιµµεδιατελψ αφτερ Φ4 11 Τλ−αϖα.

have multiple methods with the same name and the same number of arguments of the same type but different
argument names. Python supports neither of these; it has no form of function overloading whatsoever.
Methods are defined solely by their name, and there can be only one method per class with a given name. So
if a descendant class has an __init__ method, it always overrides the ancestor __init__ method, even
if the descendant defines it with a different argument list. And the same rule applies to any other method.

Guido, the original author of Python, explains method overriding this way: "Derived classes may override
methods of their base classes. Because methods have no special privileges when calling other methods of the
same object, a method of a base class that calls another method defined in the same base class, may in fact
end up calling a method of a derived class that overrides it. (For C++ programmers: all methods in Python
are effectively virtual.)" If that doesn't make sense to you (it confuses the hell out of me), feel free to ignore
it. I just thought I'd pass it along.

Always assign an initial value to all of an instance's data attributes in the __init__ method. It will save
you hours of debugging later, tracking down AttributeError exceptions because you're referencing
uninitialized (and therefore non−existent) attributes.

In versions of Python prior to 2.2, you could not directly subclass built−in datatypes like strings, lists, and
dictionaries. To compensate for this, Python comes with wrapper classes that mimic the behavior of these
built−in datatypes: UserString, UserList, and UserDict. Using a combination of normal and special
methods, the UserDict class does an excellent imitation of a dictionary. In Python 2.2 and later, you can
inherit classes directly from built−in datatypes like dict. An example of this is given in the examples that
come with this book, in fileinfo_fromdict.py.
5.6.1. Getting and Setting Items

When accessing data attributes within a class, you need to qualify the attribute name: self.attribute.
When calling other methods within a class, you need to qualify the method name: self.method.

•

5.7. Advanced Special Class Methods

In Java, you determine whether two string variables reference the same physical memory location by using
str1 == str2. This is called object identity, and it is written in Python as str1 is str2. To compare
string values in Java, you would use str1.equals(str2); in Python, you would use str1 == str2.
Java programmers who have been taught to believe that the world is a better place because == in Java
compares by identity instead of by value may have a difficult time adjusting to Python's lack of such
"gotchas".

While other object−oriented languages only let you define the physical model of an object ("this object has a
GetLength method"), Python's special class methods like __len__ allow you to define the logical model
of an object ("this object has a length").

•

5.8. Introducing Class Attributes

In Java, both static variables (called class attributes in Python) and instance variables (called data attributes
in Python) are defined immediately after the class definition (one with the static keyword, one without).
In Python, only class attributes can be defined here; data attributes are defined in the __init__ method.

Python uses try...except to handle exceptions and raise to generate them. Java and C++ use
try...catch to handle exceptions, and throw to generate them.
6.5. Working with Directories

Whenever possible, you should use the functions in os and os.path for file, directory, and path
manipulations. These modules are wrappers for platform−specific modules, so functions like
os.path.split work on UNIX, Windows, Mac OS, and any other platform supported by Python.

•

Chapter 7. Regular Expressions

7.4. Using the {n,m} Syntax

There is no way to programmatically determine that two regular expressions are equivalent. The best you can
do is write a lot of test cases to make sure they behave the same way on all relevant inputs. You'll talk more
about writing test cases later in this book.

•

Chapter 8. HTML Processing

8.2. Introducing sgmllib.py

Python 2.0 had a bug where SGMLParser would not recognize declarations at all (handle_decl would
never be called), which meant that DOCTYPEs were silently ignored. This is fixed in Python 2.1.

In the ActivePython IDE on Windows, you can specify command line arguments in the "Run script" dialog.
Separate multiple arguments with spaces.

•

8.4. Introducing BaseHTMLProcessor.py

The HTML specification requires that all non−HTML (like client−side JavaScript) must be enclosed in
HTML comments, but not all web pages do this properly (and all modern web browsers are forgiving if they
don't). BaseHTMLProcessor is not forgiving; if script is improperly embedded, it will be parsed as if it
were HTML. For instance, if the script contains less−than and equals signs, SGMLParser may incorrectly
think that it has found tags and attributes. SGMLParser always converts tags and attribute names to
lowercase, which may break the script, and BaseHTMLProcessor always encloses attribute values in
double quotes (even if the original HTML document used single quotes or no quotes), which will certainly
break the script. Always protect your client−side script within HTML comments.

•

8.5. locals and globals

Python 2.2 introduced a subtle but important change that affects the namespace search order: nested scopes.
In versions of Python prior to 2.2, when you reference a variable within a nested function or lambda
function, Python will search for that variable in the current (nested or lambda) function's namespace, then
in the module's namespace. Python 2.2 will search for the variable in the current (nested or lambda)
function's namespace, then in the parent function's namespace, then in the module's namespace. Python 2.1
can work either way; by default, it works like Python 2.0, but you can add the following line of code at the
top of your module to make your module work like Python 2.2:

from __future__ import nested_scopes

Using the locals and globals functions, you can get the value of arbitrary variables dynamically,
providing the variable name as a string. This mirrors the functionality of the getattr function, which
allows you to access arbitrary functions dynamically by providing the function name as a string.

•

8.6. Dictionary−based string formatting

Using dictionary−based string formatting with locals is a convenient way of making complex string
formatting expressions more readable, but it comes with a price. There is a slight performance hit in making
the call to y functions dynamically by providing h dy, t�rceHTMctio_aizrt�rceHTMctio_the seaPf (lEee__ 5ctivePython IDEIDEIDEIDEIDEIDEy)Tj
 eHTMct,h a pric dy

http://pyunit.sourceforge.net/

Whenever you are going to use a regular expression more than once, you should compile it to get a pattern
object, then call the methods on the pattern object directly.

Chapter 16. Functional Programming

16.2. Finding the path

The pathnames and filenames you pass to os.path.abspath do not need to exist.

os.path.abspath not only constructs full path names, it also normalizes them. That means that if you
are in the /usr/ directory, os.path.abspath('bin/../local/bin') will return
/usr/local/bin. It normalizes the path by making it as simple as possible. If you just want to normalize
a pathname like this without turning it into a full pathname, use os.path.normpath instead.

Like the other functions in the os and os.path modules, os.path.abspath is cross−platform. Your
results will look slightly different than my examples if you're running on Windows (which uses backslash as
a path separator) or Mac OS (which uses colons), but they'll still work. That's the whole point of the os
module.

•

Chapter 17. Dynamic functions

Chapter 18. Performance Tuning

18.2. Using the timeit Module

You can use the timeit module on the command line to test an existing Python program, without
modifying the code. See http://docs.python.org/lib/node396.html for documentation on the command−line
flags.

The timeit module only works if you already know what piece of code you need to optimize. If you have
a larger Python program and don't know where your performance problems are, check out the hotshot
module. (http://docs.python.org/lib/module−hotshot.html)

•

Dive Into Python 288

http://docs.python.org/lib/node396.html
http://docs.python.org/lib/module-hotshot.html

Appendix D. List of examples
Chapter 1. Installing Python

1.3. Python on Mac OS X

Example 1.1. Two versions of Python♦

•

1.5. Python on RedHat Linux

Example 1.2. Installing on RedHat Linux 9♦

•

1.6. Python on Debian GNU/Linux

Example 1.3. Installing on Debian GNU/Linux♦

•

1.7. Python Installation from Source

Example 1.4. Installing from source♦

•

1.8. The Interactive Shell

Example 1.5. First Steps in the Interactive Shell♦

•

Chapter 2. Your First Python Program

2.1. Diving in

Example 2.1. odbchelper.py♦

•

2.3. Documenting Functions

Example 2.2. Defining the buildConnectionString Function's doc string♦

•

2.4. Everything Is an Object

Example 2.3. Accessing the buildConnectionString Function's doc string♦

•

2.4.1. The Import Search Path

Example 2.4. Import Search Path♦

•

2.5. Indenting Code

Example 2.5. Indenting the buildConnectionString Function♦
Example 2.6. if Statements♦

•

Chapter 3. Native Datatypes

3.1.1. Defining Dictionaries

Example 3.1. Defining a Dictionary♦

•

3.1.2. Modifying Dictionaries

Example 3.2. Modifying a Dictionary♦
Example 3.3. Dictionary Keys Are Case−Sensitive♦
Example 3.4. Mixing Datatypes in a Dictionary♦

•

3.1.3. Deleting Items From Dictionaries

Example 3.5. Deleting Items from a Dictionary♦

•

Dive Into Python 289

3.2.1. Defining Lists

Example 3.6. Defining a List♦
Example 3.7. Negative List Indices♦
Example 3.8. Slicing a List♦
Example 3.9. Slicing Shorthand♦

•

3.2.2. Adding Elements to Lists

Example 3.10. Adding Elements to a List♦
Example 3.11. The Difference between extend and append♦

•

3.2.3. Searching Lists

Example 3.12. Searching a List♦

•

3.2.4. Deleting List Elements

Example 3.13. Removing Elements from a List♦

•

3.2.5. Using List Operators

Example 3.14. List Operators♦

•

3.3. Introducing Tuples

Example 3.15. Defining a tuple♦
Example 3.16. Tuples Have No Methods♦

•

3.4. Declaring variables

Example 3.17. Defining the myParams Variable♦

•

3.4.1. Referencing Variables

Example 3.18. Referencing an Unbound Variable♦

•

3.4.2. Assigning Multiple Values at Once

Example 3.19. Assigning multiple values at once♦
Example 3.20. Assigning Consecutive Values♦

•

3.5. Formatting Strings

Example 3.21. Introducing String Formatting♦
Example 3.22. String Formatting vs. Concatenating♦
Example 3.23. Formatting Numbers♦

•

3.6. Mapping Lists

Example 3.24. Introducing List Comprehensions♦
Example 3.25. The keys, values, and items Functions♦
Example 3.26. List Comprehensions in buildConnectionString, Step by Step♦

•

3.7. Joining Lists and Splitting Strings

Example 3.27. Output of odbchelper.py♦
Example 3.28. Splitting a String♦

•

Chapter 4. The Power Of Introspection

4.1. Diving In•

Dive Into Python 290

Example 4.1. apihelper.py♦
Example 4.2. Sample Usage of apihelper.py♦
Example 4.3. Advanced Usage of apihelper.py♦

4.2. Using Optional and Named Arguments

Example 4.4. Valid Calls of info♦

•

4.3.1. The type Function

Example 4.5. Introducing type♦

•

4.3.2. The str Function

Example 4.6. Introducing str♦
Example 4.7. Introducing dir♦
Example 4.8. Introducing callable♦

•

4.3.3. Built−In Functions

Example 4.9. Built−in Attributes and Functions♦

•

4.4. Getting Object References With getattr

Example 4.10. Introducing getattr♦

•

4.4.1. getattr with Modules

Example 4.11. The getattr Function in apihelper.py♦

•

4.4.2. getattr As a Dispatcher

Example 4.12. Creating a Dispatcher with getattr♦
Example 4.13. getattr Default Values♦

•

4.5. Filtering Lists

Example 4.14. Introducing List Filtering♦

•

4.6. The Peculiar Nature of and and or

Example 4.15. Introducing and♦
Example 4.16. Introducing or♦

•

4.6.1. Using the and−or Trick

Example 4.17. Introducing the and−or Trick♦
Example 4.18. When the and−or Trick Fails♦
Example 4.19. Using the and−or Trick Safely♦

•

4.7. Using lambda Functions

Example 4.20. Introducing lambda Functions♦

•

4.7.1. Real−World lambda Functions

Example 4.21. split With No Arguments♦

•

4.8. Putting It All Together

Example 4.22. Getting a doc string Dynamically♦
Example 4.23. Why Use str on a doc string?♦
Example 4.24. Introducing ljust♦
Example 4.25. Printing a List♦

•

Dive Into Python 291

Chapter 5. Objects and Object−Orientation

5.1. Diving In

Example 5.1. fileinfo.py♦

•

5.2. Importing Modules Using from module import

Example 5.2. import module vs. from module import♦

•

5.3. Defining Classes

Example 5.3. The Simplest Python Class♦
Example 5.4. Defining the FileInfo Class♦

•

5.3.1. Initializing and Coding Classes

Example 5.5. Initializing the FileInfo Class♦
Example 5.6. Coding the FileInfo Class♦

•

5.4. Instantiating Classes

Example 5.7. Creating a FileInfo Instance♦

•

5.4.1. Garbage Collection

Example 5.8. Trying to Implement a Memory Leak♦

•

5.5. Exploring UserDict: A Wrapper Class

Example 5.9. Defining the UserDict Class♦
Example 5.10. UserDict Normal Methods♦
Example 5.11. Inheriting Directly from Built−In Datatype dict♦

•

5.6.1. Getting and Setting Items

Example 5.12. The __getitem__ Special Method♦
Example 5.13. The __setitem__ Special Method♦
Example 5.14. Overriding __setitem__ in MP3FileInfo♦
Example 5.15. Setting an MP3FileInfo's name♦

•

5.7. Advanced Special Class Methods

Example 5.16. More Special Methods in UserDict♦

•

5.8. Introducing Class Attributes

Example 5.17. Introducing Class Attributes♦
Example 5.18. Modifying Class Attributes♦

•

5.9. Private Functions

Example 5.19. Trying to Call a Private Method♦

•

Chapter 6. Exceptions and File Handling

6.1. Handling Exceptions

Example 6.1. Opening a Non−Existent File♦

•

6.1.1. Using Exceptions For Other Purposes

Example 6.2. Supporting Platform−Specific Functionality♦

•

Dive Into Python 292

Example 7.5. The Old Way: Every Character Optional♦
Example 7.6. The New Way: From n o m♦

7.4.1. Checking for Tens and Ones

Example 7.7. Checking for Tens♦
Example 7.8. Validating Roman Numerals with {n,m}♦

•

7.5. Verbose Regular Expressions

Example 7.9. Regular Expressions with Inline Comments♦

•

7.6. Case study: Parsing Phone Numbers

Example 7.10. Finding Numbers♦
Example 7.11. Finding the Extension♦
Example 7.12. Handling Different Separators♦
Example 7.13. Handling Numbers Without Separators♦
Example 7.14. Handling Leading Characters♦
Example 7.15. Phone Number, Wherever I May Find Ye♦
Example 7.16. Parsing Phone Numbers (Final Version)♦

•

Chapter 8. HTML Processing

8.1. Diving in

Example 8.1. BaseHTMLProcessor.py♦
Example 8.2. dialect.py♦
Example 8.3. Output of dialect.py♦

•

8.2. Introducing sgmllib.py

Example 8.4. Sample test of sgmllib.py♦

•

8.3. Extracting data from HTML documents

Example 8.5. Introducing urllib♦
Example 8.6. Introducing urllister.py♦
Example 8.7. Using urllister.py♦

•

8.4. Introducing BaseHTMLProcessor.py

Example 8.8. Introducing BaseHTMLProcessor♦
Example 8.9. BaseHTMLProcessor output♦

•

8.5. locals and globals

Example 8.10. Introducing locals♦
Example 8.11. Introducing globals♦
Example 8.12. locals is read−only, globals is not♦

•

8.6. Dictionary−based string formatting

Example 8.13. Introducing dictionary−based string formatting♦
Example 8.14. Dictionary−based string formatting in BaseHTMLProcessor.py♦
Example 8.15. More dictionary−based string formatting♦

•

8.7. Quoting attribute values

Example 8.16. Quoting attribute values♦

•

8.8. Introducing dialect.py•

Dive Into Python 294

Example 10.1. Parsing XML from a file♦
Example 10.2. Parsing XML from a URL♦
Example 10.3. Parsing XML from a string (the easy but inflexible way)♦
Example 10.4. Introducing StringIO♦
Example 10.5. Parsing XML from a string (the file−like object way)♦
Example 10.6. openAnything♦
Example 10.7. Using openAnything in kgp.py♦

10.2. Standard input, output, and error

Example 10.8. Introducing stdout and stderr♦
Example 10.9. Redirecting output♦
Example 10.10. Redirecting error information♦
Example 10.11. Printing to stderr♦
Example 10.12. Chaining commands♦
Example 10.13. Reading from standard input in kgp.py♦

•

10.3. Caching node lookups

Example 10.14. loadGrammar♦
Example 10.15. Using the ref element cache♦

•

10.4. Finding direct children of a node

Example 10.16. Finding direct child elements♦

•

10.5. Creating separate handlers by node type

Example 10.17. Class names of parsed XML objects♦
Example 10.18. parse, a generic XML node dispatcher♦
Example 10.19. Functions called by the parse dispatcher♦

•

10.6. Handling command−line arguments

Example 10.20. Introducing sys.argv♦
Example 10.21. The contents of sys.argv♦
Example 10.22. Introducing getopt♦
Example 10.23. Handling command−line arguments in kgp.py♦

•

Chapter 11. HTTP Web Services

11.1. Diving in

Example 11.1. openanything.py♦

•

11.2. How not to fetch data over HTTP

Example 11.2. Downloading a feed the quick−and−dirty way♦

•

11.4. Debugging HTTP web services

Example 11.3. Debugging HTTP♦

•

11.5. Setting the User−Agent

Example 11.4. Introducing urllib2♦
Example 11.5. Adding headers with the Request♦

•

11.6. Handling Last−Modified and ETag

Example 11.6. Testing Last−Modified♦

•

Dive Into Python 296

Example 11.7. Defining URL handlers♦
Example 11.8. Using custom URL handlers♦
Example 11.9. Supporting ETag/If−None−Match♦

11.7. Handling redirects

Example 11.10. Accessing web services without a redirect handler♦
Example 11.11. Defining the redirect handler♦
Example 11.12. Using the redirect handler to detect permanent redirects♦
Example 11.13. Using the redirect handler to detect temporary redirects♦

•

11.8. Handling compressed data

Example 11.14. Telling the server you would like compressed data♦
Example 11.15. Decompressing the data♦
Example 11.16. Decompressing the data directly from the server♦

•

11.9. Putting it all together

Example 11.17. The openanything function♦
Example 11.18. The fetch function♦
Example 11.19. Using openanything.py♦

•

Chapter 12. SOAP Web Services

12.1. Diving In

Example 12.1. search.py♦
Example 12.2. Sample Usage of search.py♦

•

12.2.1. Installing PyXML

Example 12.3. Verifying PyXML Installation♦

•

12.2.2. Installing fpconst

Example 12.4. Verifying fpconst Installation♦

•

12.2.3. Installing SOAPpy

Example 12.5. Verifying SOAPpy Installation♦

•

12.3. First Steps with SOAP

Example 12.6. Getting the Current Temperature♦

•

12.4. Debugging SOAP Web Services

Example 12.7. Debugging SOAP Web Services♦

•

12.6. Introspecting SOAP Web Services with WSDL

Example 12.8. Discovering The Available Methods♦
Example 12.9. Discovering A Method's Arguments♦
Example 12.10. Discovering A Method's Return Values♦
Example 12.11. Calling A Web Service Through A WSDL Proxy♦

•

12.7. Searching Google

Example 12.12. Introspecting Google Web Services♦
Example 12.13. Searching Google♦
Example 12.14. Accessing Secondary Information From Google♦

•

Dive Into Python 297

12.8. Troubleshooting SOAP Web Services

Example 12.15. Calling a Method With an Incorrectly Configured Proxy♦
Example 12.16. Calling a Method With the Wrong Arguments♦
Example 12.17. Calling a Method and Expecting the Wrong Number of Return Values♦
Example 12.18. Calling a Method With An Application−Specific Error♦

•

Chapter 13. Unit Testing

13.3. Introducing romantest.py

Example 13.1. romantest.py♦

•

13.4. Testing for success

Example 13.2. testToRomanKnownValues♦

•

13.5. Testing for failure

Example 13.3. Testing bad input to toRoman♦
Example 13.4. Testing bad input to fromRoman♦

•

13.6. Testing for sanity

Example 13.5. Testing toRoman against fromRoman♦
Example 13.6. Testing for case♦

•

Chapter 14. Test−First Programming

14.1. roman.py, stage 1

Example 14.1. roman1.py♦
Example 14.2. Output of romantest1.py against roman1.py♦

•

14.2. roman.py, stage 2

Example 14.3. roman2.py♦
Example 14.4. How toRoman works♦
Example 14.5. Output of romantest2.py against roman2.py♦

•

14.3. roman.py, stage 3

Example 14.6. roman3.py♦
Example 14.7. Watching toRoman handle bad input♦
Example 14.8. Output of romantest3.py against roman3.py♦

•

14.4. roman.py, stage 4

Example 14.9. roman4.py♦
Example 14.10. How fromRoman works♦
Example 14.11. Output of romantest4.py against roman4.py♦

•

14.5. roman.py, stage 5

Example 14.12. roman5.py♦
Example 14.13. Output of romantest5.py against roman5.py♦

•

Chapter 15. Refactoring

Dive Into Python 298

15.1. Handling bugs

Example 15.1. The bug♦
Example 15.2. Testing for the bug (romantest61.py)♦
Example 15.3. Output of romantest61.py against roman61.py♦
Example 15.4. Fixing the bug (roman62.py)♦
Example 15.5. Output of romantest62.py against roman62.py♦

•

15.2. Handling changing requirements

Example 15.6. Modifying test cases for new requirements (romantest71.py)♦
Example 15.7. Output of romantest71.py against roman71.py♦
Example 15.8. Coding the new requirements (roman72.py)♦
Example 15.9. Output of romantest72.py against roman72.py♦

•

15.3. Refactoring

Example 15.10. Compiling regular expressions♦
Example 15.11. Compiled regular expressions in roman81.py♦
Example 15.12. Output of romantest81.py against roman81.py♦
Example 15.13. roman82.py♦
Example 15.14. Output of romantest82.py against roman82.py♦
Example 15.15. roman83.py♦
Example 15.16. Output of romantest83.py against roman83.py♦

•

Example 16.14. Importing modules dynamically♦
Example 16.15. Importing a list of modules dynamically♦

16.7. Putting it all together

Example 16.16. The regressionTest function♦
Example 16.17. Step 1: Get all the files♦
Example 16.18. Step 2: Filter to find the files you care about♦
Example 16.19. Step 3: Map filenames to module names♦
Example 16.20. Step 4: Mapping module names to modules♦
Example 16.21. Step 5: Loading the modules into a test suite♦
Example 16.22. Step 6: Telling unittest to use your test suite♦

•

Chapter 17. Dynamic functions

17.2. plural.py, stage 1

Example 17.1. plural1.py♦
Example 17.2. Introducing re.sub♦
Example 17.3. Back to plural1.py♦
Example 17.4. More on negation regular expressions♦
Example 17.5. More on re.sub♦

•

17.3. plural.py, stage 2

Example 17.6. plural2.py♦
Example 17.7. Unrolling the plural function♦

•

17.4. plural.py, stage 3

Example 17.8. plural3.py♦

•

17.5. plural.py, stage 4

Example 17.9. plural4.py♦
Example 17.10. plural4.py continued♦
Example 17.11. Unrolling the rules definition♦
Example 17.12. plural4.py, finishing up♦
Example 17.13. Another look at buildMatchAndApplyFunctions♦
Example 17.14. Expanding tuples when calling functions♦

•

17.6. plural.py, stage 5

Example 17.15. rules.en♦
Example 17.16. plural5.py♦

•

17.7. plural.py, stage 6

Example 17.17. plural6.py♦
Example 17.18. Introducing generators♦
Example 17.19. Using generators instead of recursion♦
Example 17.20. Generators in for loops♦
Example 17.21. Generators that generate dynamic functions♦

•

Chapter 18. Performance Tuning

18.1. Diving in•

Dive Into Python 300

Example 18.1. soundex/stage1/soundex1a.py♦
18.2. Using the timeit Module

Example 18.2. Introducing timeit♦

•

18.3. Optimizing Regular Expressions

Example 18.3. Best Result So Far: soundex/stage1/soundex1e.py♦

•

18.4. Optimizing Dictionary Lookups

Example 18.4. Best Result So Far: soundex/stage2/soundex2c.py♦

•

18.5. Optimizing List Operations

Example 18.5. Best Result So Far: soundex/stage2/soundex2c.py♦

•

Dive Into Python 301

Appendix E. Revision history

Revision History

Revision 5.4 2004−05−20

Added Section 12.1, �Diving In�.•
Added Section 12.2, �Installing the SOAP Libraries�.•
Added Section 12.3, �First Steps with SOAP�.•
Added Section 12.4, �Debugging SOAP Web Services�.•
Added Section 12.5, �Introducing WSDL�.•
Added Section 12.6, �Introspecting SOAP Web Services with WSDL�.•
Added Section 12.7, �Searching Google�.•
Added Section 12.8, �Troubleshooting SOAP Web Services�.•
Added Section 12.9, �Summary�.•
Incorporated technical reviewer revisions in Chapter 16, Functional Programming and Chapter 18,
Performance Tuning.

•

Revision 5.3 2004−05−12

Added isalpha() example to Section 18.3, �Optimizing Regular Expressions�. Thanks, Paul.•
Incorporated copyediting revisions into Chapter 5, Objects and Object−Orientation and Chapter 6,
Exceptions and File Handling.

•

Fixed URL of Section 9.7, �Segue�.•
Revision 5.2 2004−05−09

Fixed URL of Section 14.1, �roman.py, stage 1�.•
Added Section 18.1, �Diving in�.•
Added Section 18.2, �Using the timeit Module�.•
Added Section 18.3, �Optimizing Regular Expressions�.•
Added Section 18.4, �Optimizing Dictionary Lookups�.•
Added Section 18.5, �Optimizing List Operations�.•
Added Section 18.6, �Optimizing String Manipulation�.•
Added Section 18.7, �Summary�.•

Revision 5.1 2004−05−05

Clarified Example 7.7, �Checking for Tens� and Example 7.8, �Validating Roman Numerals with {n,m}�.•
Clarified Example 7.10, �Finding Numbers�.•
Fixed typo in Example 11.6, �Testing Last−Modified�. Thanks, Jesir.•
Fixed typo in Example 3.11, �The Difference between extend and append�. Thanks, Daniel.•
Incorporated technical reviewer revisions.•
Incorporated copy editor revisions in Chapter 1, Installing Python, Chapter 2, Your First Python Program,
Chapter 3, Native Datatypes, and Chapter 4, The Power Of Introspection.

•

Revision 5.0 2004−04−16

Added Section 11.1, �Diving in�.•
Added Section 11.2, �How not to fetch data over HTTP�.•
Added Section 11.3, �Features of HTTP�.•
Added Section 11.4, �Debugging HTTP web services�.•
Added Section 11.5, �Setting the User−Agent�.•
Added Section 11.6, �Handling Last−Modified and ETag�.•

Dive Into Python 302

Added Section 7.4, �Using the {n,m} Syntax� (incomplete).•
Added Section 7.5, �Verbose Regular Expressions� (incomplete).•
Added Section 7.6, �Case study: Parsing Phone Numbers� (incomplete).•
Added Section 7.7, �Summary�.•
Moved Section 7.2, �Case Study: Street Addresses� and Section 7.3, �Case Study: Roman Numerals� to
regular expressions chapter.

•

Added Example 6.20, �Listing Directories with glob�.•
Added Example 6.7, �Writing to Files�.•
Added Example 5.11, �Inheriting Directly from Built−In Datatype dict�.•
Added Example 10.11, �Printing to stderr�.•
Added Example 4.12, �Creating a Dispatcher with getattr� and Example 4.13, �getattr Default Values�.•
Added Example 2.6, �if Statements�.•
Added Example 3.23, �Formatting Numbers�.•
Split Chapter 5, Objects and Object−Orientation into 2 chapters: Chapter 5, Objects and Object−Orientation
and Chapter 6, Exceptions and File Handling.

•

Split Chapter 9, XML Processing into 2 chapters: Chapter 9, XML Processing and Chapter 10, Scripts and
Streams.

•

Split Chapter 13, Unit Testing into 2 chapters: Chapter 13, Unit Testing and Chapter 15, Refactoring.•
Renamed help to info in Chapter 4, The Power Of Introspection.•
Fixed incorrect back−reference in Section 8.5, �locals and globals�.•
Fixed broken example links in Section 8.1, �Diving in�.•
Fixed missing line in example in Section 9.1, �Diving in�.•
Fixed typo in Section 8.2, �Introducing sgmllib.py�.•

Revision 4.4 2003−10−08

Added Section 1.1, �Which Python is right for you?�.•
Added Section 1.2, �Python on Windows�.•
Added Section 1.3, �Python on Mac OS X�.•
Added Section 1.4, �Python on Mac OS 9�.•
Added Section 1.5, �Python on RedHat Linux�.•
Added Section 1.6, �Python on Debian GNU/Linux�.•
Added Section 1.7, �Python Installation from Source�.•
Added Section 1.9, �Summary�.•
Removed preface.•
Fixed typo in Example 3.27, �Output of odbchelper.py�.•
Added link to PEP 257 in Section 2.3, �Documenting Functions�.•
Fixed link to How to Think Like a Computer Scientist (http://www.ibiblio.org/obp/thinkCSpy/) in
Section 3.4.2, �Assigning Multiple Values at Once�.

•

Added note about implied assert in Section 3.3, �Introducing Tuples�.•
Revision 4.3 2003−09−28

Added Section 16.6, �Dynamically importing modules�.•
Added Section 16.7, �Putting it all together� (incomplete).•
Fixed links in Appendix F, About the book.•

Revision 4.2.1 2003−09−17

Fixed links on index page.•
Fixed syntax highlighting.•

Revision 4.2 2003−09−12

Dive Into Python 304

http://www.ibiblio.org/obp/thinkCSpy/

Upgraded to version 1.52 of the DocBook XSL stylesheets.•
Upgraded to version 6.52 of the SAXON XSLT processor from Michael Kay.•
Various accessibility−related stylesheet tweaks.•
Somewhere between this revision and the last one, she said yes. The wedding will be next spring.•

Revision 4.0−2 2002−04−26

Fixed typo in Example 4.15, �Introducing and�.•
Fixed typo in Example 2.4, �Import Search Path�.•
Fixed Windows help file (missing table of contents due to base stylesheet changes).•

Revision 4.0 2002−04−19

Expanded Section 2.4, �Everything Is an Object� to include more about import search paths.•
Fixed typo in Example 3.7, �Negative List Indices�. Thanks to Brian for the correction.•
Rewrote the tip on truth values in Section 3.2, �Introducing Lists�, now that Python has a separate boolean
datatype.

•

Fixed typo in Section 5.2, �Importing Modules Using from module import� when comparing syntax to Java.
Thanks to Rick for the correction.

•

Added note in Section 5.5, �Exploring UserDict: A Wrapper Class� about derived classes always overriding
ancestor classes.

•

Fixed typo in Example 5.18, �Modifying Class Attributes�. Thanks to Kevin for the correction.•
Added note in Section 6.1, �Handling Exceptions� that you can define and raise your own exceptions.
Thanks to Rony for the suggestion.

•

Fixed typo in Example 8.17, �Handling specific tags�. Thanks for Rick for the correction.•
Added note in Example 8.18, �SGMLParser� about what the return codes mean. Thanks to Howard for the
suggestion.

•

Added str function when creating StringIO instance in Example 10.6, �openAnything�. Thanks to
Ganesan for the idea.

•

Added link in Section 13.3, �Introducing romantest.py� to explanation of why test cases belong in a separate
file.

•

Changed Section 16.2, �Finding the path� to use os.path.dirname instead of os.path.split.
Thanks to Marc for the idea.

•

Added code samples (piglatin.py, parsephone.py, and plural.py) for the upcoming regular
expressions chapter.

•

Updated and expanded list of Python distributions on home page.•
Revision 3.9 2002−01−01

Added Section 9.4, �Unicode�.•
Added Section 9.5, �Searching for elements�.•
Added Section 9.6, �Accessing element attributes�.•
Added Section 10.1, �Abstracting input sources�.•
Added Section 10.2, �Standard input, output, and error�.•
Added simple counter for loop examples (good usage and bad usage) in Section 6.3, �Iterating with for
Loops�. Thanks to Kevin for the idea.

•

Fixed typo in Example 3.25, �The keys, values, and items Functions� (two elements of
params.values() were reversed).

•

Fixed mistake in Section 4.3, �Using type, str, dir, and Other Built−In Functions� with regards to the name
of the __builtin__ module. Thanks to Denis for the correction.

•

Added additional example in Section 16.2, �Finding the path� to show how to run unit tests in the current
working directory, instead of the directory where regression.py is located.

•

Modified explanation of how to derive a negative list index from a positive list index in Example 3.7,
�Negative List Indices�. Thanks to Renauld for the suggestion.

•

Dive Into Python 306

http://www.mindview.net/Books/TIPython
http://es.diveintopython.org/
http://kr.diveintopython.org/html/index.htm

http://fr.diveintopython.org/toc.html
http://jakarta.apache.org/ant/
http://www.python.org/2.1.1/license.html

http://diveintopython.org/
http://diveintopython.org/
http://diveintopython.org/
http://www.activestate.com/ASPN/Python/Cookbook/
http://www.google.com/services/free.html

Revision 2.7 2001−03−16

Added Section 8.2, �Introducing sgmllib.py�.•
Tightened up code in Chapter 8, HTML Processing.•
Changed code in Chapter 2, Your First Python Program to use items method instead of keys.•
Moved Section 3.4.2, �Assigning Multiple Values at Once� section to Chapter 2, Your First Python
Program.

•

Edited note about join string method, and provided a link to the new entry in The Whole Python FAQ
(http://www.python.org/docF0 1eor 43.4 re f
−0.0 61.8 523.8 0.8 re f
−0.0 clan.orf
−0lr.eI whying method, and provided a link to tiF6 he new entry .

http://www.python.org/doc/FAQ.html
http://www.python.org/cgi-bin/faqw.py?query=4.96&querytype=simple&casefold=yes&req=search
http://diveintopython.org/
http://diveintopython.org/

Added "further reading" links in most sections, and collated them in Appendix A, Further reading.

A d d e d S e c t i o n 5 . 6 , � S p e c i a l C l a s s M e t h o d s e

· M o 0 . 0 m i n o r s t y l e s h e e t t w e a k s , i n c l u d i n g a d d i n g t i t l e s t o w i l l d i s p l a y a d e s c r i p t i o n o f t h e l i n k t a r g e t i n a c u t e l i t t l e t o o l t i p ·

R e v i s i o n 1 . 7 1

2 0 0 1 - 0 1 - 0 3

M a d e s e v e r a l m o d i f i c a t i o n s t o s t y l e s h e e t s t o i m p r o v e b r o w s e r c o m p a t i b i l i t y

·

R e v i s i o n 1 . 7

2 0 0 1 - 0 1 - 0 2

A d d e d i n t r o d u c t i o n t o C h a p t e r 2 ,

· A d d e d i n t r o d u c t i o n t o C h a p t e r 4 ,

· A d d e d r e v i e w s e c t i o n t o C h a p t e r 5 ,

· A d d e d S e c t i o n 5 . 9 , � P r i v a t e F u n c t i o n s e

· A d d e d S e c t i o n 6 . 3 , � I t e r a t i n g w i t h f o r L o o p s e

· A d d e d S e c t i o n 3 . 4 . 2 , � A s s i g n i n g M u l t i p l e V a l u e s a t O n c e e

· W r o t e s c r i p t s t o c o n v e r t b o o k t o n e w o u t p u t f o r m a t s : o n e s i n g l e H T M L f i l e , P D F , M i c r o s o f t W o r d 9 7 , a n d p l a i n t e x t ·

R e g i s t e r e d t h e t h e b o o k i n a l l a v a i l a b l e o u t p u t f o r m a t s f o r o f f l i n e r e a d i n g ·

M o d i f i e d t h e X S L s t y l e s h e e t s t o c h a n g e t h e h e a d e r a n d f o o t e r n a v i g a t i o n t h a t d i s p l a y s o n e a c h p a g e . T h e t o p o f e a c h p a g e i s b r a n d e d w i t h t h e d o m a i n n a m e a n d b o o k v e r s i o n , f o l l o w e d b y a b r e a d c r u m b t r a i l t o j u m p b a c k t o t h e c h a p t e r t a b l e o f c o n t e n t s , t h e m a i n t a b l e o f c o n t e n t s , o r t h e s i t e h o m e p a g e .

· R e v i s i o n 1 . 6

2 0 0 0 - 1 2 - 1 1

A d d e d S e c t i o n 4 . 8 , � P u t t i n g I t A l l T o g e t h e r e

· F i n i s h e d C h a p t e r 4 ,

· S t a r t e d C h a p t e r 5 ,

·

R e v i s i o n 1 . 5

2 0 0 0 - 1 1 - 2 2

A d d e d S e c t i o n 4 . 6 , � T h e P e c u l i a r N a t u 0 . 0 o f a n d a n d o r e

· A d d e d S e c t i o n 4 . 7 , � U s i n g l a m b d a F u n c t i o n s e

· A d d e d a p p e n d i x t h a t l i s t s s e c t i o n a b s t r a c t s

· A d d e d a p p e n d i x t h a t l i s t s t i p s

· A d d e d a p p e n d i x t h a t l i s t s e x a m p l e s

· A d d e d a p p e n d i x t h a t l i s t s r e v i s i o n h i s t o r y

· E x p a n d e d e x a m p l e 0 o f m a p p i n g l i s t s i n S e c t i o n 3 . 6 , � M a p p i n g L i s t s e

· E n c a p s u l a t e d s e v e r a l m o 0 . 0 c o m m o n p h r a s e s i n t o e n t i t i e s

· U p g r a d e d t o v e r s i o n 1 . 2 5 0 o f t h e D o c B o o k X S L s t y l e s h e e t s

·

R e v i s i o n 1 . 4

2 0 0 0 - 1 1 - 1 4

A d d e d S e c t i o n 4 . 5 , � F i l t e r i n g L i s t s e

· A d d e d

· A d d e d

· A d d e d a d d i t i o n a l n o t e a b o u t _ _ n a m e _ _

· S w i t c h e d t o t h e S A X O N X S L T p r o c e s s o r f r o m M i c h a e l K a y

· U p g r a d e d t o v e r s i o n 1 . 2 4 0 o f t h e D o c B o o k X S L s t y l e s h e e t s

· A d d e d d b - h t m l p r o c e s s i n g i n s t r u c t i o n s w i t h e x p l i c i t f i l e n a m e s o f e a c h c h a p t e r a n d s e c t i o n , t o a l l o w d e e p l i n k s t o c o n t e n t e v e n i f I a d d o r r e - a r r a n g e s e c t i o n s l a t e r ·

M a d e s e v e r a l c o m m o n p h r a s e s i n t o e n t i t i e s f o r e a s i e r r e u s e

· C h a n g e d s e v e r a l

·

R e v i s i o n 1 . 3

2 0 0 0 - 1 1 - 0 9D i v e I n t o P y t h o n

3 1 2

Added section on dynamic code execution.•
Added links to relevant section/example wherever I refer to previously covered concepts.•
Expanded introduction of chapter 2 to explain what the function actually does.•
Explicitly placed example code under the GNU General Public License and added appendix to display
license. [Note 8/16/2001: code has been re−licensed under GPL−compatible Python license]

•

Changed links to licenses to use xref tags, now that I know how to use them.•
Revision 1.2 2000−11−06

Added first four sections of chapter 2.•
Tightened up preface even more, and added link to Mac OS version of Python.•
Filled out examples in "Mapping lists" and "Joining strings" to show logical progression.•
Added output in chapter 1 summary.•

Revision 1.1 2000−10−31

Finished chapter 1 with sections on mapping and joining, and a chapter summary.•
Toned down the preface, added links to introductions for non−programmers.•
Fixed several typos.•

Revision 1.0 2000−10−30

Initial publication•

Dive Into Python 313

Appendix F. About the book
This book was written in DocBook XML (http://www.oasis−open.org/docbook/) using Emacs
(http://www.gnu.org/software/emacs/), and converted to HTML using the SAXON XSLT processor from Michael
Kay (http://saxon.sourceforge.net/) with a customized version of Norman Walsh's XSL stylesheets
(http://www.nwalsh.com/xsl/). From there, it was converted to PDF using HTMLDoc
(http://www.easysw.com/htmldoc/), and to plain text using w3m
(http://ei5nazha.yz.yamagata−u.ac.jp/~aito/w3m/eng/). Program listings and examples were colorized using an
updated version of Just van Rossum's pyfontify.py, which is included in the example scripts.

If you're interested in learning more about DocBook for technical writing, you can download the XML source
(http://diveintopython.org/download/diveintopython−xml−5.4.zip) and the build scripts
(http://diveintopython.org/download/diveintopython−common−5.4.zip), which include the customized XSL
stylesheets used to create all the different formats of the book. You should also read the canonical book, DocBook:
The Definitive Guide (http://www.docbook.org/). If you're going to do any serious writing in DocBook, I would
recommend subscribing to the DocBook mailing lists (http://lists.oasis−open.org/archives/).

Dive Into Python 314

http://www.oasis-open.org/docbook/
http://www.gnu.org/software/emacs/
http://saxon.sourceforge.net/
http://www.nwalsh.com/xsl/
http://www.easysw.com/htmldoc/
http://ei5nazha.yz.yamagata-u.ac.jp/~aito/w3m/eng/
http://diveintopython.org/download/diveintopython-xml-5.4.zip
http://diveintopython.org/download/diveintopython-common-5.4.zip
http://www.docbook.org/
http://lists.oasis-open.org/archives/

Appendix G. GNU Free Documentation License
Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA
02111−1307 USA Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

G.0. Preamble

The purpose of this License is to make a manual, textbook, or other written document "free" in the sense of freedom:
to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially
or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in
the same sense. It complements the GNU C8i0tal Public Licensese is a oTuhe G comgv kinfsa w . senbe free indecauin sen s000 Fre nense psenbe free inTh68 Td(Thisbe free in)Tj
0inopyue t2 Tw .refingnceot allowed.holeanssahout mogcanthebe free in

suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup has been
designed to thwart or discourage subsequent modification by readers is not Transparent. A copy that is not
"Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format,
LaTeX input format, SGML or XML using a publicly available DTD, and standard−conforming simple HTML
designed for human modification. Opaque formats include PostScript, PDF, proprietary formats that can be read and
edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not
generally available, and the machine−generated HTML produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold,
legibly, the material this License requires to appear in the title page. For works in formats which do not have any title
page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the
beginning of the body of the text.

G.2. Verbatim copying

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that
this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced
in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow
the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

G.3. Copying in quantity

If you publish printed copies of the Document numbering more than 100, and the Document's license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front−Cover
Texts on the front cover, and Back−Cover Texts on the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim
copying in other respects.

G.4. Modifications

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above,
provided that you release the Modified Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of
previous versions (which should, if there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of that version gives permission.

A.

List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the Document (all
of its principal authors, if it has less than five).

B.

State on the Title page the name of the publisher of the Modified Version, as the publisher.C.
Preserve all the copyright notices of the Document.D.
Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.E.
Include, immediately after the copyright notices, a license notice giving the public permission to use the
Modified Version under the terms of this License, in the form shown in the Addendum below.

F.

Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the
Document's license notice.

G.

Include an unaltered copy of this License.H.
Preserve the section entitled "History", and its title, and add to it an item stating at least the title, year, new
authors, and publisher of the Modified Version as given on the Title Page. If there is no section entitled
"History" in the Document, create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.

I.

Preserve the network location, if any, given in the Document for public access to a Transparent copy of the
Document, and likewise the network locations given in the Document for previous versions it was based on.
These may be placed in the "History" section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the version it refers to gives
permission.

J.

In any section entitled "Acknowledgements" or "Dedications", preserve the section's title, and preserve in the
section all the substance and tone of each of the contributor acknowledgements and/or dedications given
therein.

K.

Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.

L.

Delete any section entitled "Endorsements". Such a section may not be included in the Modified Version.M.
Do not retitle any existing section as "Endorsements" or to conflict in title with any Invariant Section.N.

If the Modified Version includes new front−matter sections or appendices that qualify as Secondary Sections and
contain no material copied from the Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These
titles must be distinct from any other section titles.

You may add a section entitled "Endorsements", provided it contains nothing but endorsements of your Modified
Version by various parties−−for example, statements of peer review or that the text has been approved by an
organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front−Cover Text, and a passage of up to 25 words as a Back−Cover
Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front−Cover Text and one of
Back−Cover Text may be added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the

Dive Into Python 317

previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity
for or to assert or imply endorsement of any Modified Version.

G.5. Combining documents

You may combine the Document with other documents released under this License, under the terms defined in section
4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the
original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be
replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make

G.9. Termination

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this
License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically
terminate your rights under this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full compliance.

G.10. Future revisions of this license

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time
to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See http://www.gnu.org/copyleft/ (http://www.gnu.org/copyleft/).

Each version of the License is given a distinguishing version number. If the Document specifies that a particular
numbered version of this License "or any later version" applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been published (not as a draft) by the Free
Software Foundation. If the Document does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation.

G.11. How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the
following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License, Version 1.1 or any later version
published by the Free Software Foundation; with the Invariant Sections being LIST THEIR TITLES,
with the Front−Cover Texts being LIST, and with the Back−Cover Texts being LIST. A copy of the
license is included in the section entitled "GNU Free Documentation License".

If you have no Invariant Sections, write "with no Invariant Sections" instead of saying which ones are invariant. If you
have no Front−Cover Texts, write "no Front−Cover Texts" instead of "Front−Cover Texts being LIST"; likewise for
Back−Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel
under your choice of free software license, such as the GNU General Public License, to permit their use in free
software.

Dive Into Python 319

http://www.gnu.org/copyleft/

Appendix H. Python license

H.A. History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI) in the
Netherlands as a successor of a language called ABC. Guido is Python's principal author, although it includes many
contributions from others. The last version released from CWI was Python 1.2. In 1995, Guido continued his work on
Python at the Corporation for National Research Initiatives (CNRI) in Reston, Virginia where he released several
versions of the software. Python 1.6 was the last of the versions released by CNRI. In 2000, Guido and the Python
core development team moved to BeOpen.com to form the BeOpen PythonLabs team. Python 2.0 was the first and
only release from BeOpen.com.

Following the release of Python 1.6, and after Guido van Rossum left CNRI to work with commercial software
developers, it became clear that the ability to use Python with software available under the GNU Public License
(GPL) was very desirable. CNRI and the Free Software Foundation (FSF) interacted to develop enabling wording
changes to the Python license. Python 1.6.1 is essentially the same as Python 1.6, with a few minor bug fixes, and with
a different license that enables later versions to be GPL−compatible. Python 2.1 is a derivative work of Python 1.6.1,
as well as of Python 2.0.

After Python 2.0 was released by BeOpen.com, Guido van Rossum and the other PythonLabs developers joined
Digital Creations. All intellectual property added from this point on, starting with Python 2.1 and its alpha and beta

This License Agreement will automatically terminate upon a material breach of its terms and conditions.6.
Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or joint
venture between PSF and Licensee. This License Agreement does not grant permission to use PSF trademarks
or trade name in a trademark sense to endorse or promote products or services of Licensee, or any third party.

7.

By copying, installing or otherwise using Python 2.1.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

8.

H.B.2. BeOpen Python open source license agreement version 1

This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at 160 Saratoga
Avenue, Santa Clara, CA 95051, and the Individual or Organization ("Licensee") accessing and otherwise
using this software in source or binary form and its associated documentation ("the Software").

1.

Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants
Licensee a non−exclusive, royalty−free, world−wide license to reproduce, analyze, test, perform and/or
display publicly, prepare derivative works, distribute, and otherwise use the Software alone or in any
derivative version, provided, however, that the BeOpen Python License is retained in the Software, alone or in
any derivative version prepared by Licensee.

2.

BeOpen is making the Software available to Licensee on an "AS IS" basis. BEOPEN MAKES NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT
NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT
THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

3.

BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
USING, MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

4.

This License Agreement will automatically terminate upon a material breach of its terms and conditions.5.
This License Agreement shall be governed by and interpreted in all respects by the law of the State of
California, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to create
any relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a trademark sense to
endorse or promote products or services of Licensee, or any third party. As an exception, the "BeOpen
Python" logos available at http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

6.

By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

7.

H.B.3. CNRI open source GPL−compatible license agreement

This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, having an office
at 1895 Preston White Drive, Reston, VA 20191 ("CNRI"), and the Individual or Organization ("Licensee")
accessing and otherwise using Python 1.6.1 software in source or binary form and its associated
documentation.

1.

Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a nonexclusive,
royalty−free, world−wide license to reproduce, analyze, test, perform and/or display publicly, prepare
derivative works, distribute, and otherwise use Python 1.6.1 alone or in any derivative version, provided,
however, that CNRI's License Agreement and CNRI's notice of copyright, i.e., "Copyright (c) 1995−2001
Corporation for National Research Initiatives; All Rights Reserved" are retained in Python 1.6.1 alone or in
any derivative version prepared by Licensee. Alternately, in lieu of CNRI's License Agreement, Licensee may
substitute the following text (omitting the quotes): "Python 1.6.1 is made available subject to the terms and
conditions in CNRI's License Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle): 1895.22/1013. This Agreement

2.

Dive Into Python 321

may also be obtained from a proxy server on the Internet using the following URL:
http://hdl.handle.net/1895.22/1013".
In the event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or any part
thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 1.6.1.

3.

CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI MAKES NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT
NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4.

CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

5.

This License Agreement will automatically terminate upon a material breach of its terms and conditions.6.
This License Agreement shall be governed by the federal intellectual property law of the United States,
including without limitation the federal copyright law, and, to the extent such U.S. federal law does not apply,
by the law of the Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python 1.6.1 that incorporate
non−separable material that was previously distributed under the GNU General Public License (GPL), the law
of the Commonwealth of Virginia shall govern this License Agreement only as to issues arising under or with
respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in this License Agreement shall be
deemed to create any relationship of agency, partnership, or joint venture between CNRI and Licensee. This
License Agreement does not grant permission to use CNRI trademarks or trade name in a trademark sense to
endorse or promote products or services of Licensee, or any third party.

7.

By clicking on the "ACCEPT" button where indicated, or by copying, installing or otherwise using Python
1.6.1, Licensee agrees to be bound by the terms and conditions of this License Agreement.

8.

H.B.4. CWI permissions statement and disclaimer

Copyright (c) 1991 − 1995, Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights
reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and
this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch Centrum or
CWI not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

Dive Into Python 322

	Table of Contents
	Dive Into Python
	Chapter 1. Installing Python
	1.1. Which Python is right for you?
	1.2. Python on Windows
	1.3. Python on Mac OS X
	1.4. Python on Mac OS 9
	1.5. Python on RedHat Linux
	1.6. Python on Debian GNU/Linux
	1.7. Python Installation from Source
	1.8. The Interactive Shell
	1.9. Summary

	Chapter 2. Your First Python Program
	2.1. Diving in
	2.2. Declaring Functions
	2.3. Documenting Functions
	2.4. Everything Is an Object
	2.5. Indenting Code
	2.6. Testing Modules

	Chapter 3. Native Datatypes
	3.1. Introducing Dictionaries
	3.2. Introducing Lists
	3.3. Introducing Tuples
	3.4. Declaring variables
	3.5. Formatting Strings
	3.6. Mapping Lists
	3.7. Joining Lists and Splitting Strings
	3.8. Summary

	Chapter 4. The Power Of Introspection
	4.1. Diving In
	4.2. Using Optional and Named Arguments
	4.3. Using type, str, dir, and Other Built-In Functions
	4.4. Getting Object References With getattr
	4.5. Filtering Lists
	4.6. The Peculiar Nature of and and or
	4.7. Using lambda Functions
	4.8. Putting It All Together
	4.9. Summary

	Chapter 5. Objects and Object-Orientation
	5.1. Diving In
	5.2. Importing Modules Using from module import
	5.3. Defining Classes
	5.4. Instantiating Classes
	5.5. Exploring UserDict: A Wrapper Class
	5.6. Special Class Methods
	5.7. Advanced Special Class Methods
	5.8. Introducing Class Attributes
	5.9. Private Functions
	5.10. Summary

	Chapter 6. Exceptions and File Handling
	6.1. Handling Exceptions
	6.2. Working with File Objects
	6.3. Iterating with for Loops
	6.4. Using sys.modules
	6.5. Working with Directories
	6.6. Putting It All Together
	6.7. Summary

	Chapter 7. Regular Expressions
	7.1. Diving In
	7.2. Case Study: Street Addresses
	7.3. Case Study: Roman Numerals
	7.4. Using the {n,m} Syntax
	7.5. Verbose Regular Expressions
	7.6. Case study: Parsing Phone Numbers
	7.7. Summary

	Chapter 8. HTML Processing
	8.1. Diving in
	8.2. Introducing sgmllib.py
	8.3. Extracting data from HTML documents
	8.4. Introducing BaseHTMLProcessor.py
	8.5. locals and globals
	8.6. Dictionary-based string formatting
	8.7. Quoting attribute values
	8.8. Introducing dialect.py
	8.9. Putting it all together
	8.10. Summary

	Chapter 9. XML Processing
	9.1. Diving in
	9.2. Packages
	9.3. Parsing XML
	9.4. Unicode
	9.5. Searching for elements
	9.6. Accessing element attributes
	9.7. Segue

	Chapter 10. Scripts and Streams
	10.1. Abstracting input sources
	10.2. Standard input, output, and error
	10.3. Caching node lookups
	10.4. Finding direct children of a node
	10.5. Creating separate handlers by node type
	10.6. Handling command-line arguments
	10.7. Putting it all together
	10.8. Summary

	Chapter 11. HTTP Web Services
	11.1. Diving in
	11.2. How not to fetch data over HTTP
	11.3. Features of HTTP
	11.4. Debugging HTTP web services
	11.5. Setting the User-Agent
	11.6. Handling Last-Modified and ETag
	11.7. Handling redirects
	11.8. Handling compressed data
	11.9. Putting it all together
	11.10. Summary

	Chapter 12. SOAP Web Services
	12.1. Diving In
	12.2. Installing the SOAP Libraries
	12.3. First Steps with SOAP
	12.4. Debugging SOAP Web Services
	12.5. Introducing WSDL
	12.6. Introspecting SOAP Web Services with WSDL
	12.7. Searching Google
	12.8. Troubleshooting SOAP Web Services
	12.9. Summary

	Chapter 13. Unit Testing
	13.1. Introduction to Roman numerals
	13.2. Diving in
	13.3. Introducing romantest.py
	13.4. Testing for success
	13.5. Testing for failure
	13.6. Testing for sanity

	Chapter 14. Test-First Programming
	14.1. roman.py, stage 1
	14.2. roman.py, stage 2
	14.3. roman.py, stage 3
	14.4. roman.py, stage 4
	14.5. roman.py, stage 5

	Chapter 15. Refactoring
	15.1. Handling bugs
	15.2. Handling changing requirements
	15.3. Refactoring
	15.4. Postscript
	15.5. Summary

	Chapter 16. Functional Programming
	16.1. Diving in
	16.2. Finding the path
	16.3. Filtering lists revisited
	16.4. Mapping lists revisited
	16.5. Data-centric programming
	16.6. Dynamically importing modules
	16.7. Putting it all together
	16.8. Summary

	Chapter 17. Dynamic functions
	17.1. Diving in
	17.2. plural.py, stage 1
	17.3. plural.py, stage 2
	17.4. plural.py, stage 3
	17.5. plural.py, stage 4
	17.6. plural.py, stage 5
	17.7. plural.py, stage 6
	17.8. Summary

	Chapter 18. Performance Tuning
	18.1. Diving in
	18.2. Using the timeit Module
	18.3. Optimizing Regular Expressions
	18.4. Optimizing Dictionary Lookups
	18.5. Optimizing List Operations
	18.6. Optimizing String Manipulation
	18.7. Summary

	Appendix A. Further reading
	Appendix B. A 5-minute review
	Appendix C. Tips and tricks
	Appendix D. List of examples
	Appendix E. Revision history
	Appendix F. About the book
	Appendix G. GNU Free Documentation License
	G.0. Preamble
	G.1. Applicability and definitions
	G.2. Verbatim copying
	G.3. Copying in quantity
	G.4. Modifications
	G.5. Combining documents
	G.6. Collections of documents
	G.7. Aggregation with independent works
	G.8. Translation
	G.9. Termination
	G.10. Future revisions of this license
	G.11. How to use this License for your documents

	Appendix H. Python license
	H.A. History of the software
	H.B. Terms and conditions for accessing or otherwise using Python

