

Invent Your Own
Computer Games with Python

2nd Edition

Al Sweigart

For Caro, with more love
than I ever knew I had.

A Note to Parents and Fellow
Programmers

Thank your for reading this book. My motivation for writing this book comes from a gap
I saw in today's literature for kids interested in learning to program. I started programming
when I was 9 years old in the BASIC language with a book similar to this one. During the
course of writing this, I've realized how a modern language like Python has made
programming far easier and versatile for a new generation of programmers. Python has a
gentle learning curve while still being a serious language that is used by programmers
professionally.

The current crop of programming books for kids that I've seen fell into two categories.
First, books that did not teach programming so much as "game creation software" or a
dumbed-down languages to make programming "easy" (to the point that it is no longer
programming). Or second, they taught programming like a mathematics textbook: all
principles and concepts with little application given to the reader. This book takes a
different approach: show the source code for games right up front and explain
programming principles from the examples.

I have also made this book available under the Creative Commons license, which allows
you to make copies and distribute this book (or excerpts) with my full permission, as long
as attribution to me is left intact and it is used for noncommercial purposes. (See the
copyright page.) I want to make this book a gift to a world that has given me so much.
Thank you again for reading this book, and feel free to email me any questions or
comments.

Al Sweigart
al@inv8mptsm2(dm)-2(m)8oapaT83/R8 ll 0 0 1303(t)-12()]TJ

Table of Contents

Source Code Listing
hello.py 21
guess.py 30
jokes.py 51
dragon.py 58
buggy.py 83
coinFlips.py 87
hangman.py 103
tictactoe.py 150
truefalsefizz.py 172
bagels.py 184
sonar.py 213
cipher.py 244
reversi.py 261
aisim1.py 292
aisim2.py 294
aisim3.py 299
pygameHelloWorld.py 309
animation.py 324
collisionDetection.py 338
pygameInput.py 348
spritesAndSounds.py 360
dodger.py 371

1 Installing Python 1
Downloading and Installing Python 2

Starting Python 4

How to Use This Book 4

The Featured Programs 5

Line Numbers and Spaces 5

Summary 7

2 The Interactive Shell 8
Some Simple Math Stuff 8

Evaluating Expressions 11

Storing Values in Variables 12

Using More Than One Variable 15

Quotes and Double Quotes 53

The end Keyword Argument 54

Summary 55

6 Dragon Realm 56
Introducing Functions 56

Sample Run of Dragon Realm 57

Dragon Realm's Source Code 57

def Statements 60

Boolean Operators 61

Return Values 65

Variable Scope 65

Parameters 68

Where to Put Function Definitions 70

Displaying the Game Results 71

The Colon : 73

Where the Program Really Begins 73

Designing the Program 75

Summary 76

7 Using the Debugger 77
Bugs! 77

Starting the Debugger 78

Stepping 80

The Go and Quit Buttons 81

Stepping Over and Stepping Out 81

Find the Bug 83

Break Points 86

Summary 88

8 Flow Charts 89
How to Play "Hangman" 89

Sample Run of "Hangman" 89

ASCII Art 91

Designing a Program with a Flowchart 92

Creating the Flow Chart 93

Summary: The Importance of Planning Out the Game

Summary: Creating Game-Playing Artificial Intelligences 182

11 Bagels 183
Sample Run 184

Bagel's Source Code 184

Designing the Program 186

The random.shuffle() Function 188

Augmented Assignment Operators 190

The sort() List Method 192

The join() String Method 192

String Interpolation 194

Summary: Getting Good at Bagels 198

12 Cartesian Coordinates 200
Grids and Cartesian Coordinates 201

Negative Numbers 202

202

Brute Force 251

Summary: Reviewing Our Caesar Cipher Program 253

15 Reversi 256
How to Play Reversi 255

Sample Run 257

Reversi's Source Code 260

The bool() Function 276

Summary: Reviewing the Reversi Game 290

16 AI Simulation 291
"Computer vs. Computer" Games 291

AISim1.py Source Code 292

AISim2.py Source Code 294

Percentages 296

The round() Function 297

Comparing Different AI Algorithms 299

AISim3.py Source Code 299

Learning New Things by Running Simulation Experiments 305

17 Graphics and Animation 306
Installing Pygame 307

Hello World in Pygame 308

Hello World's Source Code 308

Importing the Pygame Module 311

Variables Store References to Objects 313

Colors in Pygame 313

Fonts, and the pygame.font.SysFont() Function 315

Attributes 316

Constructor Functions and the type() function. 317

The pygame.PixelArray Data Type 321

Events and the Game Loop 322

Animation 324

The Animation Program's Source Code 324

Some Small Modifications 335

Summary: Pygame Programming 335

Topics Covered In This Chapter:

� Downloading and installing the Python interpreter.
� Using IDLE's interactive shell to run instructions.
� How to use this book.
� The book's website at http://inventwithpython.com

Hello! This is a book that will teach you how to program by showing you how to create
computer games. Once you learn how the games in this book work, you'll be able to create
your own games. All you'll need is a computer, some software called the Python
Interpreter, and this book. The software you'll need is free and you can download it from
the Internet.

When I was a kid, I found a book like this that taught me how to write my first programs
and games. It was fun and easy. Now as an adult, I still have fun programming computers,
and I get paid for it. But even if you don't become a computer programmer when you grow
up, programming is a useful and fun skill to have.

Computers are very useful machines. The good news is that learning to program a
computer is easy. If you can read this book, you can program a computer. A computer
program is just a bunch of instructions run by a computer, just like a storybook is just a
whole bunch of sentences read by the reader.

These instructions are like the turn-by-turn instructions you might get for walking to a
friend's house. (Turn left at the light, walk two blocks, keep walking until you find the first
blue house on the right.) The computer follows each instruction that you give it in the order
that you give it. Video games are themselves nothing but computer programs. (And very

1

page, then look for the file called Python 3.1 Windows Installer (Windows binary --
does not include source) and click on its link to download Python for Windows.

Figure 1-1: Click the Windows installer link to download Python for Windows from http://www.python.org

Double-click on the python-3.1.msi file that you've just downloaded to start the Python
installer. (If it doesn't start, try right-clicking the file and choosing Install.) Once the
installer starts up, click the Next button and just accept the choices in the installer as you go
(no need to make any changes). When the install is finished, click Finish.

Important Note! Be sure to install Python 3, and not Python 2. The programs in this
book use Python 3, and you'll get errors if you try to run them with Python 2.

The installation for Mac OS is similar. Instead of downloading the .msi file from the
Python website, download the .dmg Mac Installer Disk Image file instead. The link to this
file will look something like "Mac Installer disk image (3.1.1)" on the "Download Python
Software" web page.

If your operating system is Ubuntu, you can install Python by opening a terminal
window (click on Applications > Accessories > Terminal) and entering sudo apt-get
install python3 then pressing Enter. You will need to enter the root password to
install Python, so ask the person who owns the computer to type in this password.

There may be a newer version of Python available than 3.1. If so, then just download the
latest version. The game programs in this book will work just the same. If you have any
problems, you can always Google for "installing Python on <your operating system's
name>". Python is a very popular language, so you should have no difficulty finding help.

A video tutorial of how to install Python is available from this book's website at
http://inventwithpython.com/videos/.

3

1 - Installing Python

Starting Python

If your operating system is Windows XP, you should be able to run Python by choosing
Start > Programs > Python 3.1 > IDLE (Python GUI). When it's running it should
looking something like Figure 1-2. (But different operating systems will look slightly
different.)

Figure 1-2: The IDLE program's interactive shell on Windows.

IDLE stands for Interactive DeveLopment Environment. The development environment
is software that makes it easy to write Python programs. We will be using IDLE to type in
our programs and run them.

while guesses < 10:
 if number == 42:
 print('Hello')

Text Wrapping in This Book

Some lines of code are too long to fit on one line on the page, and the text of the code
wil lwil l

tutorial of how to use the diff tool is available from this book's website at
http://inventwithpython.com/videos/.

Summary

This chapter has helped you get started with the Python software by showing you the
python.org website where you can download it for free. After installing and starting the
Python IDLE software, we will be ready to learn programming starting in the next chapter.

This book's website at http://inventwithpython.com has more information on each of the
chapters, including an online tracing website that can help you understand what exactly
each line of the programs do.

7

1 - Installing Python

Figure 2-1: Type 2+2 into the shell.

As you can see, we can use the Python shell just like a calculator. This isn't a program by
itself because we are just learning the basics right now. The + sign tells the computer to add
the numbers 2 and 2. To subtract numbers use the - sign, and to multiply numbers use an
asterisk (*), like so:

When used in this way, +, -, *, and / are called operators

Expressions

This is like how a cat is a type of pet, but not all pets are cats. Someone could have a pet
dog or a pet lizard. An expression is made up of values (such as integers like 8 and 6)
connected by an operator (such as the * multiplication sign). A single value by itself is also
considered an expression.

Storing Values in Variables

evaluate expressions (that is, reduce the expression to a single value), and that
expressions are values (such as 2 or 5) combined with operators (such as + or -). You have
also learned that you can store values inside of variables in order to use them later on.

In the next chapter, we will go over some more basic concepts, and then you will be
ready to program!

17

2 - The Interactive Shell

Topics Covered In This Chapter:

� Flow of execution
� Strings
� String concatenation
� Data types (such as strings or integers)
� Using IDLE to write source code.
� Saving and running programs in IDLE.
� The print() function.
� The input() function.
� Comments
� Capitalizing variables
� Case-sensitivity
� Overwriting variables

That's enough of integers and math for now. Python is more than just a calculator. Now
let's see what Python can do with text. In this chapter, we will learn how to store text in
variables, combine text together, and display them on the screen. Many of our programs
will use text to display our games to the player, and the player will enter text into our
programs through the keyboard. We will also make our first program, which greets the user
with the text, "Hello World!" and asks for the user's name.

Strings

In Python, we work with little chunks of text called strings. We can store string values
inside variables just like we can store number values inside variables. When we type

18

strings, we put them in between two single quotes ('), like this:

Saving Your Program

A video tutorial of how to use the file editor is available from this book's website at
http://inventwithpython.com/videos/.

If you get an error that looks like this:

Hello world!
What is your name?
Albert

Traceback (most recent call last):
 File "C:/Python26/test1.py", line 4, in <module>
 myName = input()
 File "<string>", line 1, in <module>
NameError: name 'Albert' is not defined

...then this means you are running the program with Python 2, instead of Python 3. You

lists the differences between Python 2 and 3 that you will need for this book.

Opening The Programs You've Saved

To load a saved program, choose File > Open. Do that now, and in the window that
appears choose hello.py and press the Open button. Your saved hello.py program should
open in the File Editor window.

Now it's time to run our program. From the File menu, choose Run > Run Module or
just press the F5 key on your keyboard. Your program should run in the shell window that
appeared when you first started IDLE. Remember, you have to press F5 from the file
editor's window, not the interactive shell's window.

When your program asks for your name, go ahead and enter it as shown in Figure 3-5:

Figure 3-5: What the interactive shell looks like when running the "Hello World" program.

Now, when you push Enter, the program should greet you (the user) by name.

The

Hello world!
What is your name?
poop
It is good to meet you, poop

Variable Names

The computer doesn't care what you name your variables, but you should. Giving
variables names that reflect what type of data they contain makes it easier to understand
what a program does. Instead of name

the screen when the print() function is executed.

Strings are just a different data type that we can use in our programs. We can use the +
operator to concatenate strings together. Using the + operator to concatenate two strings
together to form a new string is just like using the + operator to add two integers to form a
new integer (the sum).

In the next chapter, we will learn more about variables so that our program will
remember the text and numbers that the player enters into the program. Once we have
learned how to use text, numbers, and variables, we will be ready to start creating games.

27

3 - Strings

Topics Covered In This Chapter:

� import sta tements
� Modules
� Arguments
� while statements
� Conditions
� Blocks
� Booleans
� Comparison operators
� The difference between = and ==.
� if statements
� The break keyword.
� The str() and int() functions.
� The random.randint() function.

The "Guess the Number" Game

We are going to make a "Guess the Number" game. In this game, the computer will think
of a random number from 1 to 20, and ask you to guess the number. You only get six
guesses, but the computer will tell you if your guess is too high or too low. If you guess the
number within six tries, you win.

This is a good game for you to start with because it uses random numbers, loops, and
input from the user in a fairly short program. As you write this game, you will learn how to
convert values to different data types (and why you would need to do this).
28

This line creates a new variable named guessesTaken

because each time the randint() function is called, it returns some random number,
just like when you roll dice you will get a random number each time.

>>> import random

into these lines:

9. number = random.randint(1, 100)
10. print('Well, ' + name + ', I am thinking of a number

between 1 and 100.')

And now the computer will think of an integer between 1 and 100. Changing line 9 will
change the range of the random number, but remember to change line 10 so that the game
also tells the player the new range instead of the old one.

Calling Functions that are Inside Modules

By the way, be sure to enter random.randint(1, 20) and not j ust randint(1,
20), or the computer will not know to look in the random module for the randint()import0random) function. This is why import statements usually go at the beginning of the program. Passing Arguments to Functions The integer values between the parentheses in the random.randint(1, 20)Arguments

Loops

Line 12 has something called a while statement, which indicates the beginning of a
while loop. Loops are parts of code that are executed over and over again. But before we
can learn about while loops, we need to learn a few other concepts first. Those concepts
are blocks, booleans, comparison operators, conditions, and finally, the while statement.

Blocks

A block is one or more lines of code grouped together with the same minimum amount
of indentation. You can tell where a block begins and ends by looking at the line's
indentation (that is, the number of spaces in front of the line).

A block begins when a line is indented by four spaces. Any following line that is also
indented by four spaces is part of the block. A block within a block begins when a line is
indented with another four spaces (for a total of eight spaces in front of the line). The block
ends when there is a line of code with the same indentation before the block started.

Below is a diagram of the code with the blocks outlined and numbered. The spaces have
black squares filled in to make them easier to count.

Figure 4-1: Blocks and their indentation. The black dots represent spaces.

For example, look at the code above. The spaces have been replaced with dark squares to
make them easier to count. Line 12 has an indentation of zero spaces and is not inside any

False

The condi

True

Looping with While Statements

The while statement marks the beginning of a loop. Sometimes in our programs, we
want the program to do something over and over again. When the execution reaches a
while statement, it evaluates the condition next to the while keyword. If the condition
evaluates to True, the execution moves inside the while-block. (In our program, the while-
block begins on line 13.) If the condition evaluates to False, the execution moves all the
way past the while-block. (In our program, the first line after the while-block is line 28.)

12. while guessesTaken < 6:

Figure 4-2: The while loop's condition.

Figure 4-2 shows how the execution flows depending on the condition. If
low[3[(e)aken < 6:

int('forty-two') also produces an error. That said, the int() function is slightly
forgiving- if our string has spaces on either side, it will still run without error. This is why
the int(' 42 ') call works.

The 3 + int('2') line shows an expression that adds an integer 3 to the return value
of int('2') (which evaluates to 2 as well). The expression evaluates to 3 + 2, which
then evaluates to 5. So even though we cannot add an integer and a string (3 + '2'
would show us an error), we can add an integer to a string that has been converted to an
integer.

Remember, back in our program on line 15 the guess variable originally held the string
value of what the player typed. We will overwrite the string value stored in guess with the
integer value returned by the int() function. This is because we will later compare the
player's guess with the random number the computer came up with. We can only compare
two integer values to see if one is greater (that is, higher) or less (that is, lower) than the
other. We cannot compare a string value with an integer value to see if one is greater or less
than the other, even if that string value is numeric such as '5'.

In our Guess the Number game, if the player types in something that is not a number,
then the function call int() will result in an error and the program will crash. In the other
games in this book, we will add some more code to check for error conditions like this and
give the player another chance to enter a correct response.

Notice that calling int(guess) does not change the value in the guess variable. The
code int(guess) is an expression that evaluates to the integer value form of the string
stored in the guess variable. We must assign this return value to guess in order to change
the value in guess to an integer with this full line: guess = int(guess)

Incrementing Variables

17. guessesTaken = guessesTaken + 1

Once the player has taken a guess, we want to increase the number of guesses that we
remember the player taking.

The first time that we enter the loop block, guessesTaken has the value of 0. Python
will take this value and add 1 to it. 0 + 1 is 1. Then Python will store the new value of 1
to guessesTaken .

Think of line 17 as meaning, "the guessesTaken variable should be one more than
what it already is".

When we add 1 to an integer value, programmers say they are incrementing the value
(because it is increasing by one). When we subtract one from a value, we are
decrementing the value (because it is decreasing by one). The next time the loop block

434 - Guess the Number

loops around, guessesTaken will have the value of 1 and will be incremented to the
value 2.

Is the Player's Guess Too Low?

Lines 19 and 20 check if the number that the player guessed is less than the secret
random number that the computer came up with. If so, then we want to tell the player that
their guess was too low by printing this message to the screen.

if Statements

19. if guess < number:
20. print('Your guess is too low.') # There are

eight spaces in front of print.

Line 19 begins an if statement with the keyword, if. Next to the if keyword is the
condition. Line 20 starts a new block (you can tell because the indentation has increased
from line 19 to line 20.) The block that follows the if keyword is called an if-block. An
if statement is used if you only want a bit of code to execute if some condition is true.
Line 19 has an if statement with the condition guess < number. If the condition
evaluates to True, then the code in the if-block is executed. If the condition is False,
then the code in the if-block is skipped.

Figure 4

If the integer the player enters is less than the random integer the computer thought up,

the program displays Your guess is too low . If the integer the player enters is
equal to or larger than the random integer (in which case, the condition next to the if
keyword would have been False), then this block would have been skipped over.

In Line 32, we use the comparison operator != with the if statement's condition to
mean "is not equal to." If the value of the player's guess is lower or higher than (and
therefore, not equal to) the number chosen by the computer, then this condition evaluates to
True, and we enter the block that follows this if statement on line 33.

Lines 33 and 34 are inside the if-block, and only execute if the condition is True.

33. number = str(number)
34. print('Nope. The number I was thinking of was ' +

number)

Figure 4-4: The tracing web page.

The left side of the web page shows the source code, and the highlighted line is the line
of code that is about to be executed. You execute this line and move to the next line by
clicking the "Next" button. You can also go back a step by clicking the "Previous" button,
or jump directly to a step by typing it in the white box and clicking the "Jump" button.

On the right side of the web page, there are three sections. The "Current variable values"

Topics Covered In This Chapter:

� Using print()'s end keyword argument to skip newlines.
� Escape characters.
� Using single quotes and double quotes for strings.

Make the Most of print()

Most of the games in this book will have simple text for input and output. The input is
typed by the user on the keyboard and entered to the computer. The output is the text
displayed on the screen. In Python, the print() function can be used for displaying
textual output on the screen. We've learned how the basics of using the print() function,
but there is more to learn about how strings and print() work in Python.

Sample Run of Jokes

What do you get when you cross a snowman with a vampire ?

Frostbite!

What do dentists call an astronaut's cavity?

A black hole!

Knock knock.

50

Who's there?

Int errupting cow.

Interrupting cow wh-MOO!

Joke's Source Code

Here is the source code for our short jokes program. Type it into the file editor and save
it as jokes.py. If you do not want to type this code in, you can also download the source
code from this book's website at the URL http://inventwithpython.com/chapter5.

Important Note! Be sure to run this program with Python 3, and not Python 2. The
programs in this book use Python 3, and you'll get errors if you try to run them with Python
2. You can click on Help and then About IDLE to find out what version of Python you
have.

jokes.py
This code can be downloaded from http://inventwithpython.com/jokes.py
If you get errors after typing this code in, compare it to the book's code with the online
diff tool at http://inventwithpython.com/diff or email the author at
al@inventwithpython.com

1. print('What do you get when you cross a snowman with a
vampire?')

2. input()
3. print('Frostbite!')
4. print()
5. print('What do dentists call a astronaut\'s cavity?')
6. input()
7. print('A black hole!')
8. print()
9. print('Knock knock.')

10. input()
11. print("Who's there?")
12. input()
13. print('Interrupting cow.')
14. input()
15. print('Interrupting cow wh', end='')
16. print('-MOO!')

Don't worry if you don't understand everything in the program. Just save and run the
program. Remember, if your program has bugs in it, you can use the online diff tool at
http://inventwithpython.com/chapter5.

How the Code Works

Let's look at the code more

1. print('What do you get when you cross a snowman with a
va mpire?')

2. input()
3. print('Frostbite!')
4. print()

Here we have three print() function calls. Because we don't want to tell the player
what the joke's punch line is, we have a call to the input() function after the first print
(). The player can read the first line, press Enter, and then read the punch line.

The user can still type in a string and hit Enter, but because we aren't storing this string
in any variable, the program will just forget about it and move to the next line of code.

The last print() function call has no string argument. This tells the program to just
print a blank line. Blank lines can be useful to keep our text from being bunched up
together.

Escape Characters

5. print('What do dentists call a astronaut\'s cavity?')
6. i nput()
7. print('A black hole!')
8. print()

In the first print()above, you'll notice that we have a slash right before the single
quote (that is, the apostrophe). This backslash (\ is a backslash, / is a forward slash) tells us
that the letter right after it is an escape character. An escape character helps us print out
letters that are hard to enter into the source code. There are several different escape
characters, but in our call to print() the escape character is the single quote.

We have to have the single quote escape character because otherwise the Python
interpreter would think that this quote meant the end of the string. But we want this quote
to be a part of the string. When we print this string, the backslash will not show up.

Some Other Escape Characters

What if you really want to display a backslash? This line of code would not work:

>>> print('He flew away in a green\teal
helicopter.')

That print() function call would show up as:

52

to the previous line, instead

Topics Covered In This Chapter:

� The time module.
� The time.sleep() function.
� The return keyword.
� Creating our own functions with the def keyword.
� The and and or and not boolean operators.
� Truth tables
� Variable scope (Global and Local)
� Parameters and Arguments
� Flow charts

Introducing Functions

We've already used two functions in our previous programs: input() and print().
In our previous programs, we have called these functions to execute the code that is inside
these functions. In this chapter, we will write our own functions for our programs to call. A
function is like a mini-program that is inside of our program. Many times in a program we
want to run the exact same code multiple times. Instead of typing out this code several
times, we can put that code inside a function and call the function several times. This has
the added benefit that if we make a mistake, we only have one place in the code to change
it.

The game we will create to introduce functions is called "Dragon Realm", and lets the
player make a guess between two caves which randomly hold treasure or certain doom.

56

How to Play "Dragon Realm"

In this game, the player is in a land full of dragons. The dragons all live in caves with
their large piles of collected treasure. Some dragons are friendly, and will share their
treasure with you. Other dragons are greedy and hungry, and will eat anyone who enters
their cave. The player is in front of two caves, one with a friendly dragon and the other with
a hungry dragon. The player is given a choice between the two.

Open a new file editor window by clicking on the File menu, then click on New
Window. In the blank window that appears type in the source code and save the source
code as dragon.py. Then run the program by pressing F5.

Sample Run of Dragon Realm

You are in a land full of dragons. In front of you,
you see two caves. In one cave, the dragon is friendly
and will share his treasure with you. The other dragon
is greedy and hungry, and will eat you on sight.

Which cave will you go into? (1 or 2)
1
You a pproach the cave...
It is dark and spooky...
A large dragon jumps out in front of you! He opens his jaws
and...

Gobbles you down in one bite!
Do you want to play again? (yes or no)
no

Dragon Realm's Source Code

Here is the source code for the Dragon Realm game. Typing in the source code is a great
way to get used to the code. But if you don't want to do all this typing, you can download
the source code from this book's website at the URL http://inventwithpython.com/chapter6.
There are instructions on the website that will tell you how to download and open the

Important Note! Be sure to run this program with Python 3, and not Python 2. The
programs in this book use Python 3, and you'll get errors if you try to run them with Python
2. You can click on Help and then About IDLE to find out what version of Python you
have.

dragon.py
This code can be downloaded from http://inventwithpython.com/dragon.py
If you get errors after typing this code in, compare it to the book's code with the online
diff tool at http://inventwithpython.com/diff or email the author at
al@inventwithpython.com

1. import random
2. import time
3.
4. def displayIntro():
5. print('You are on a planet full of dragons. In front

of you,')
6. print('you see two caves. In one cave, the dragon is

friendly')
7. print('and will share his treasure with you. The

other dragon')
8. print('is greedy and hungry, and will eat you on

sight.')
9. print()

10.
11. def chooseCave():
12. cave = ''
13. while cave != '1' and cave != '2':
14. print('Which cave will you go into? (1 or 2)')
15. cave = input()
16.
17. return cave
18.
19. def checkCave(chosenCave):
20. print('You approach the cave...')
21. time.sleep(2)
22. print('It is dark and spooky...')
23. time.sleep(2)
24. print('A large dragon jumps out in front of you! He

opens his jaws and...')
25. print()

39.
40. caveNumber = chooseCave()
41.
42. checkCave(caveNumber)
43.
44. print('Do you want to play again? (yes or no)')
45. playAgain = input()

How the Code Works

Let's look at the source code in more detail.

1. import random
2. import time

Here we have two import statements. We import the random module like we did in the
Guess the Number game. In Dragon Realm, we will also want some time-related functions
that the time module includes, so we will import that as well.

Defining the displayIntro() Function

4. def displayIntro():
5. print('You are on a planet full of dragons. In front

def Statements

Try typing the following into the interactive shell:

>>> True or True
True
>>> True or False
True
>>> False or True
True
>>> False or False
False

Experimenting with the not Operator

The third boolean operator is not. The not operator is different from every other
operator we've seen before, because it only works on one value, not two. There is only
value on the right side of the not

program execution will continue on past the while loop.

The reason we have a loop here is because the player may have typed in 3 or 4 or
HELLO. Our program doesn't make sense of this, so if the player did not enter 1 or 2, then
the program loops back and asks the player again. In fact, the computer will patiently ask
the player for the cave number over and over again until the player types in 1 or 2. When
the player does that, the while-block's condition will be False, and we will jump down
past the while-block and continue with the program.

Return Values

17. return cave

This is the return keyword, which only appears inside def-blocks. Remember how the
input() function returns the string value that the player typed in? Or how the randint
() function will return a random integer value? Our function will also return a value. It
returns the string that is stored in cave.

This means that if we had a line of code like spam = chooseCave(), the code
inside chooseCave() would be executed and the function call will evaluate to
chooseCave()

we create a variable named spam inside of the function, the Python interpreter will
consider them to be two separate variables. That means we can change the value of spam
ins