
Licensed under the Creative Commons BY-

https://creativecommons.org/licenses/by-sa/4.0/
https://docs.python.org/
https://docs.python.org/2/faq/general.html

– 2 –

Identifiers should be meaningful. While i = 1 is perfectly valid, index = 1 is preferable.
When an identifier comprises two or more words, use camelCase (rowIndex), CapWords
(RowIndex), or underscores (row_index.) Don’t mix them; pick a style and stick with it.

Python Keywords and Operators

There are more than thirty Python keywords, including things like if, else, while, and
import. The two Boolean constants True and False are capitalized; the other keywords are
not. Rather than memorizing a list of keywords, learn them as you need them.

Python arithmetic operators include the usual suspects, +, -, *, and / for addition, subtraction,
multiplication, and division. You can also use *

– 3 –

Python also has many compound data types, including arrays and lists, data types for date and
time, and for enumeration. You will learn these as you need them.

Assigning a value to a variable for the first time declares the variable, that is, creates it.

answer = 'yes' # The variable "answer" exists and has a value

Python is dynamically typed. That means the data type of a variable can change when a new
value is assigned to it.

answer = 'yes' # The variable "answer" is a string
answer = 42 # And now it's an integer

It is, in general, good practice not to change the type of a variable during the execution of a
program. Python has a built-in type() that will return the type of a variable is passed to it.2

>>> answer = 'yes'
>>> type(answer)
<class 'str'>
>>> answer = 42
>>> type(answer)
<class 'int'>

Block structure and Indentation

In many languages, indentation is used for pretty-printing, that is to make the program more
readable, but is ignored by the language processor. In Python, indentation is used to delineate
syntactic structures called blocks, and so it has meaning to the Python language processor. It
also has the effect of making the program more readable.

if i < 0: # The colon starts a block
 print "i is negative" # This is within the block
else: # A new block at the same level
 print "i is nonnegative"
 if i < 10: # An inner block; indented further
 print "i has one digit"
 else:
 print "i has multiple digits"

Indentation must be consistent; “ragged” indentation will cause an error, as will mixing tabs and
spaces. Python’s specified best practice in PEP-8 is to use four spaces for each block level.3

Defining and Using Functions

Python has hundreds of functions, like the type() function described earlier. You can write
your own functions, too. You’d do that when the same bit of code would otherwise have to

2 The Python interpreter uses >>> to prompt for input from the user.
3 That’s right… four keystrokes when one ought to do. Happily, autopep8 will fix things up for you. Some editors
and IDEs can also help with this.

– 4 –

appear in two or more places within your program. A function means the code appears in only
one place and is called from several places as needed.4

A function is defined by the keyword def (for “define”) followed by the function name, the
parameters of the function enclosed in parentheses, and a colon. The colon begins a block, and
the function body – the code and data that comprise the function – are the contents of the block.
Parameters are placeholders for data; when the function is called, the parameters are replaced by
the arguments with which the function was called. If there are no parameters, the parentheses
are empty but must still be present.

Here is a tiny Python program with an example of defining and using a function.
def greet(who, when):
 print("Good " + when + ", " + who + "!")

greet("Bob","afternoon") # Prints "Good afternoon, Bob!"
player = "Gina"
time = "evening"
greet(player,time) # Prints "Good evening, Gina!"

In this program, the function is called greet and the parameters are who and when. There’s
something a little strange, too. The print function is printing strings, but there are plus signs in
there. The reason is that the plus operator is overloaded in Python to serve as the string
concatenation operator, too. If plus is given two numbers, it adds; if it’s given two strings, it
concatenates. Mixing strings and numbers gives

– 5 –

To use an object, it must be defined either within its own scope or within an enclosing scope.
“Scope” only means whether an object is visible to a particular piece of code. Let’s look at an
example:

Program to illustrate "scope"
name = "Gina"

def greetTest():
 print ("Entering greetTest")
 print (name) # Prints "Gina"
 when = "morning"
 print (when) # Prints "morning"
 print ("Leaving greetTest")

greetTest()
print (name) # Works as expected, prints "Gina"
print (when) # Name Error: name 'when' is not defined
End of the program

There are two important things to notice about this example. The variable name is defined in the
outer scope, and so is available anywhere in the program, including within the function
greetTest. The variable when is defined within greetTest; it is available within the scope
of greetTest, including any inner scopes – there aren’t any inner scopes in the example – but it
is not available outside the scope of greetTest.

If the same name is defined in an outer and inner scope, the definition in the current scope is
used. Such a definition makes the name a local variable. Let’s look a

– 6 –

name = "Gina"
def greetTest():
 global name # 'name' will NOT be redefined
 name = "George" # The variable OUTSIDE the function changes
 print (name)
greetTest()

– 7 –

We no longer have to qualify sleep by prefixing the module name, so we type less. Cool! The
whole time module is still imported, but only the sleep() method becomes a part of the current
program’s name space.

Instantiating and Using Objects

– 8 –

The Error Messages Are Your Friends

One of the sad things about learning to program is that we make mistakes. If we’re lucky, the
mistakes lead to error messages.8 Since we don’t like making mistakes, those error messages
sometimes make our brains slam shut, and that’s a bad thing.

So, read the error messages; they exist to help you. Python’s error messages will tell you where
(at what line) the error was detected, how Python got there, and something about the error. Note
that where the error was detected isn’t always where the error is. You may have to put in some
effort! For example, suppose a message says, “Name Error: name 'when' is not defined.” The
actual error is almost certainly somewhere else. Perhaps when wasn’t defined at all, or it was
misspelled, perhaps as wjen, when it was defined. On the other hand, if the message says,
“Name Error: name 'wjen' is not defined” then the error is probably right there, in the form of a
misspelled variable name.

A Sample Program

Here is a Python program taken from https://www.programiz.com/python-
programming/examples/prime-number Read it carefully. Identify those features you learned
here and look up anything that’s new. That’s how you learn to read and write!

Python program to check if the input number is prime or not
take input from the user
num = int(input("Enter a number: ")) # Look up int and input
prime numbers are greater than 1
if num > 1:
 # check for factors
 for i in range(2,num): # Look up for…in
 if (num % i) == 0:
Look back at Keywords and Operators; look up modulus, maybe
 print(num,"is not a prime number")
 print(i,"times",num//i,"is",num)
 break
 else:
 print(num,"is a prime number")

if input number is less than
or equal to 1, it is not prime
else:
 print(num,"is not a prime number")

8 If we’re unlucky, our programs run, but give wrong answers with no indication of error. Language processors like
Python can detect syntax errors, that is, errors in the expression of the language. They usually can’t detect logic
errors, in which we do the wrong thing, but in the right way.

	Python Jump Start Bob Brown College of Computing and Software Engineering Kennesaw State University
	About Reading and Writing
	Why is it Called “Python?”
	Getting Help
	Python Identifiers
	Python Keywords and Operators
	Comments
	Variables, Data Types
	Block structure and Indentation
	Defining and Using Functions
	Scope of Variables and Other Objects
	Importing Modules
	Instantiating and Using Objects
	The Error Messages Are Your Friends
	A Sample Program

