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Abstract

This study establishes su�cient conditions for observing instances of Simpson’s (data aggregation) Paradox under
rank sum scoring (RSS), as used, e.g., in the Wilcoxon-Mann-Whitney (WMW ) rank sum test. The WMW
test is a primary nonparametric statistical test in FDA drug product evaluation and other prominent medical
settings. Using computational nonparametric statistical methods, we also establish the relative frequency with
which paradox-generating Simpson Reversals occur under RSS when an initial data sequence is pooled with its
ordinal replicate. For each 2-sample, n-element per sample or 2 x n case of RSS considered, strict Reversals



al. (2016) �nd evidence of aggregation paradox instances in randomized clinical trial data. Evidence of aggregation
paradox has also been found in the settings of large-scale registry data (Gron et al. 2016), meta-analyses of an
academic literature (Kuss 2016), and clinical risk reclassi�cation (Cook et al. 2017).

In one respect, the Paradox can be viewed as a robustness check on a given statistical result. When the Paradox
occurs, it follows that a given result is at least partly a function of data scale or sample size. As noted, the Paradox
has been shown to occur for the Wilcoxon-Mann-Whitney (WMW ) Rank Sum Test. However, there exists no
computational or empirical evidence as to the frequency with which instances of the Paradox occur for the WMW
Rank Sum Test and little such evidence for non-parametric statistical tests overall. Are Simpson Reversals pervasive
or only a marginal concern for the WMW Test? Even previuos research as to the incidence of the Paradox for
parametric statistical tests is scarce and provides somewhat contrasting conclusions. There are two studies that
directly estimate the incidence of Simpson’s Paradox for parametric tests: one pertaining to contingency tables and
the other pertaining to path models. Speci�cally, Pavlides and Perlman (2009) �nd that a Simpson Reversal occurs
for one-sixtieth (1.67%) of all 2 x 2 x 2 contingency tables. Kock (2015) estimates the likelihood of a Simpson
Reversal in path models as approximately 12.8%.



test and data under consideration.

2 Material and Methods

2.1 Rank Sum Scoring and Simpson’s Aggregation Paradox: De�nitions and a The-
orem

Let us formally de�ne 2-group rank sum scoring. Consider two groups, A and B. Each group is de�ned as a rank-
ordered sequence of n individual elements, where n is some integer greater than 1 (n 2 Z+). For example, A is
de�ned as A = (a1; a2; a3; :::; an), where the element ai represents the ith ranked element in A. We de�ne an event
as an objective process of comparison that generates a complete rank-order sequence of individuals across more than
one group (i.e., both within and between groups). An event might be de�ned as a competition or as a statistical test.
Consider an event in which elements of A and B are compared. If A and B are each composed of n elements, for
example, then the event generates a rank-ordered outcome sequence of 2n elements. One possible outcome sequence
for the case in which n = 3 is FAB = (a1; b1; b2; a2; b3; a3). If ai precedes bj in the outcome sequence, we say ai � bj
(ai ranks higher than bj). For simplicity, we assume that rank-order equality between two elements is not possible,
an outcome that would obtain given continuous measurement of underlying parameter values. For any ai 2 A and
bj 2 B, that is, we have that ai � bj � bj � ai is a tautology.

Formally, we represent the rank of an element ai 2 A in the outcome sequence FAB as r(ai j FAB). Let x+
i (FAB) =

fx 2 FAB : x � aig be the set of elements in FAB that rank better than ai. Then, r(ai j FAB) =j x+
i (FAB j +1.

From elemental rankings, we generate a rank sum score for each group as follows. The respective scores for A and
B for outcome sequence FAB are S(A j FAB) = �aj2A r(aj j FAB) and S(B j FAB) = �bj2B r(bj j FAB),
where it must be that S(A j FAB) + S(B j FAB) = 2n(2n+1)

2 . That is, the sum of ranks for a 2n element sequence
simply equals the sum of integers from 1 to 2n. We ma.494 Td [(j)]TJ/F8 9.9626 Tf 6.418 0 Td [(+1.)]TJ5(element sequenceA 16



B �FF 0 A (i.e., that A ranks strictly higher than B in F and F 0, but B ranks strictly higher than A in FF 0) or that
B �F A and B �F 0 A, but A �FF 0 B (i.e., that B ranks strictly higher than A in F and F 0, but A ranks strictly
higher than B in FF 0).



Of the 252 initial sequences, FAB , Table 1 tells us that the su�cient condition for presence of at least one Reversal
across all poolings of FAB and F 0AB holds for 78 of those sequences. Empirically, we observe at least one Reversal
for each of those sequences. The second table shows that for a distinct 78 of the 252 initial 2 x 5 sequences, FAB ,
the su�cient condition for absence of Reversals across all poolings of FAB and F 0AB holds. Empirically, we do not
observe a Reversal in any of those sequences. For the 2 x 5 case, then, the su�cient conditions from Theorems 1
and 2 assure us whether or not Reversal is possible for 156 of the 252 initial sequences (61.9%).

Tables 3 and 4 deal with su�cient conditions for the 2 x 6 case. Of the 924 initial sequences, FAB , for the 2 x
6 case, Table 3 shows that the su�cient condition for presence of at least one Reversal across all possible poolings
of FAB and F 0AB holds for 220 of those sequences. Empirically, we observe at least one Reversal for each of those
sequences. The fourth table shows that for a distinct 364 of the 924 initial 2 x 6 sequences, FAB , the su�cient
condition for absence of Reversals across all poolings of FAB and F 0AB holds. Empirically, we do not observe a
Reversals for any of those sequences. For the 2 x 6 case, then, the su�cient conditions from Theorems 1 and 2
assure us whether or not Reversal is possible for 584 of the 924 initial sequences (63.2%). In each observed case,
the su�cient conditions determine unambiguously whether an initial sequence is susceptible to Reversal in more
than three-�fths of cases. Therefore, we can usually assess the general robustness of a rank sum result in terms of
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susceptibility to Simpson Reversals. As such an assessment can determine whether a given result is scale-variant, we
conclude that Theorems 1 and 2 can usually combine to o�er a \quick and dirty" robustness check on a rank sum
result.

2.2 The Sample Space: A Combinatorial Description

For the 2 x n case, there are (2n)!
(n!)2 initial sequences, F . We are arranging 2n elements|n elements from each of

2 groups|where we do not distinguish between respective objects of a given group. For each initial sequence, we
then ask in how many ways F can be pooled with its ordinal replicate, F 0. This is equivalent to a \stars and bars"
combinatorial problem, in which we are placing 2n \stars" or elements from F 0 into 2n \bars" or potential pooling
positions amongst the elements of F . From this characterization, there are (4n)!

([2n]!)2 poolings for each initial sequence

and (2n)!
(n!)2 initial sequences. The number of poolings for a given 2 x n case equals the product of the number of initial

sequences and the number of poolings per initial sequence, or (2n)!
(n!)2 � (4n)!

([2n]!)2 , for each case, 2 x n. For example, in

the 2 x 7 case, there are (2�7)!
(7!)2 = 3; 432 initial sequences, F . Moreover, there are (4�7)!

([2�7]!)2 = 40; 116; 600 poolings per
initial sequence. As such, there are 3; 432 � 40; 116; 600 or approximately 137.68 billion possible poolings for the 2 x
7 case. We provide the sample space for each 2 x n case in Table 5 of the subsequent section.

2.3 Computational Methods Materials
We wrote a computational algorithm in Java by which to search the sample space of each case where 0 < n(2 Z+) < 7:
The algorithm is shown in Appendix 1. It programmatically generates all possible initial sequences, FAB (F 0AB), for
a case, then creates all possible pooled sequences, FF 0AB ; for each initial sequence. For each initial sequence, rank
sum scores for A and B are computed. This scoring task is then repeated for each pooling FF 0AB of FAB and F 0AB
and iteratively for each pooling of each initial sequence. Then, instances of Simpson Reversal are checked using the



We observe that Simpson Reversals are not possible for su�ciently small n (i.e., n < 3). In the context of
Theorem 1, the largest possible � is not su�ciently large to motivate a strict Simpson Reversal in these cases. For
the 2 x 1 and 2 x 2 cases, a group that is strictly outranked in FAB cannot have a positive �, and therefore a strict
Simpson Reversal is not possible for these cases. We can also consider computed cases where n > 2. From even to
odd case, the results suggest a wavelike movement in the likelihood of a Simpson Reversal. In general, there is a
lower likelihood of strict Simpson Reversal in even cases than in neighboring odd cases due to the possibility of ties
for n-even cases of pairwise rank sum scoring (but not for n-odd cases). With some probability mass allowing for a
pairwise tie in the n-even case, strict Simpson Reversals are less likely. This result also holds for other social choice
violations (e.g., violations of Transitivity and of IIA; see Boudreau et al. 2014). To evaluate the marginal e�ect of
increases in n, as distinct from the e�ect of changes from even to odd case, one should compare the iterative trend
between n and n+ 2 rather than that between n and n+ 1. We do this for the even and odd cases, respectively, in
Figure 1.

Over the set of cases computed, the relative frequency of Reversal rises for both the even and odd sets of cases.
For the 2 x 8 case, we run a simulation to estimate whether this trend might continue. Speci�cally, we randomly
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select and generate one-quarter of all possible initial sequences, FAB , (without replacement) for this case and then
replicate each selected initial sequence. For each selected initial sequence and its replicate, we then randomly select
approximately 0.1% of all possible poolings, or a little more than 600,000 poolings per sampled initial sequence. For
each pooling, we check for Reversals



Table 6 shows that reversals are more likely given sequences that feature both close rank sum scores and unin-
terrupted clusters of one group and then of the other within the rank sequence. Note that the maximum Reversal
likelihood generating sequence for each case is not unique. In each case, one could transpose the elements ‘a’ and
the elements ‘b’ to obtain the same Reversal likelihood. We �nd that the maximum Reversal likelihood generating
sequence also generates the closest margin of victory in each case (i.e., 1 rank sum unit for n-odd cases and 2 rank
sum units for n-even cases). While the overall likelihood of Reversal



From this data, we �nd that Nokia E Series phones from this time period rank higher than Apple iPhones in
terms of emitting lower levels of radiation. The rank sum score for the 8 Nokia (Apple) phones is 62 (74). We
also compare subsets of these two mobile phone series. For example, we compare the 7 (6; 5; 4; 3; 2; 1) most recently
released Nokia E phones in the dataset with the 7 (6; 5; 4; 3; 2; 1) most recently released Apple iPhones. For each
of these subsets, Nokia E Series phones also rank better than Apple iPhones under rank sum scoring. Given these
subset results, we might expect Simpson Reversals to not occur in this application data.

In this application setting, there are two main ways in which to think of Simpson Reversals. One can think
of them in the speci�c: Is there an alternative set of data comparing the two phone series such that, when pooled
with the original data, yields a Reversal? Alternatively, one can think of them generally: For what proportion of
poolings of this data and its ordinal replicate does a strict Reversal arise? Though the speci�c question dominates
applications in the previous literature on Simpson Reversals, the general question has certain conceptual advantages.
Under the general question, one can determine how globally robust a given data is against Reversal when pooled
with an ordinal data that individually generates an identical test result. When one ordinally replicates a data set, no
new information is introduced by which to evaluate the two groups. By de�nition, the original data and its ordinal
replicate yield the very same rank sum test result. By considering incidence of Reversal under pooling of the two data
sets, one can determine the general robustness of the original result by considering to what extent that result relies
upon the interaction of the test itself with scale-variant features of the data. In the present application, therefore,
we consider the general question as a means to determine the general robustness of the data against (susceptibility
to) Reversal. In so doing, one can characterize the strength of the original result in terms of data scale invariance.

In the empirical exercise, we �rst consider the 2 groups and 8 phone types per group case (i.e., the 2 x 8 case).
We sort the data from lowest to highest SAR level to obtain SAR rankings for each of the 16 phones. We then
add the 8 rank positions of Apple iPhones and the 8 rank positions of Nokia E phones, respectively, to obtain each
brand’s empirically-observed rank sum score. We then consider each \most-recent sub-sample" of the data. That is,
the 2 x 7 case is developed by rank sum scoring the 7 most recently marketed Apple iPhones in the sample against
the 7 most recently marketed Nokia E phones. The same procedure was followed inductively to obtain the 2 x n
case 8 n 2 f1; 2; 3; : : : ; 6g. For each case, rank sum scores are shown in Table 8. In Table 9, incidence of empirically
observed Reversal is reported for each case.
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Unlike in our computational treatment, note that a single outcome for F is given (observed) in the empirical
treatment. For the empirical application, then, we need only consider all possible poolings of the speci�ed sequence,
F , and its ordinal replicate, F 0. In the computational section, we observed that the likelihood of a strict Reversal
has a high degree of variability across initial sequences. As this application selects a single sequence F based solely
on market characteristics of two cellular phone product series (e.g., similar market time period, status as a popular
line of phones during that time period, and number of models in series) and not on parametric properties of the
underlying data, there was no a priori reason to believe that instances of strict Reversal would occur at all in the
application. For two of the 2 x n cases considered, the 2 x 1 and 2 x 2 cases, we have established that Reversals
are not possible for any pooling of the data. However, we observe a cluster of Reversals
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