
Prevalence of Simpson’s Paradox in Nonparametric Statistical Analysis of Medical and

Other Scientific Data: Theoretical and Computational Analysis

James Boudreau1

Justin Ehrlich2

Shane Sanders3

September 9, 2020

I. Introduction

 Simpson’s Aggregation Paradox, also known as the Yule-Simpson Aggregation Paradox,

represents an anomaly in statistics whereby two qualitatively equivalent statistical test results—

each arising from one of two distinct constitutent data sets—disappears when the same statistical

test is applied to the pooled data. The paradox was first put forth by Yule (1903) and later

developed by Simspon (1951). While first considered strictly for the domain of parametric testing,

its presence in non-parametric statistical results has recently been studied (Haunsperger, 2003;

Haunsperger and Saari ,1991; Bargagliotti, 2009). Of particular importance to the present study,

Haunsperger and Saari (1991) find conditions for Simpson reversals in rank sum statistical testing,

where the term Simpson reversal is used synonymously with the term instances of Simpson’s

Aggregation Paradox herein. In general, the paradox has been found to affect statistical results in

many important scientific domains, including environmental and related ecological research (see,

e.g., Pineiro et al., 2006

occur if the sign test for matched pairs is applied to the primitive and pooled data sets. They also

show evidence of Simpson reversals for the WMW Test.

 Despite the important theoretical contributions by Haunsperger and Saari (1991) and

Nagaraja and Sanders (2020), there

|Groups| |Data Points

per Group|

|Initial Data

Sequences|

|Poolings per

Initial Sequence|

|Poolings overall| Simpson Reversal Rel. Frequency

2 1 2

𝑆(𝐵|𝐹𝐴𝐵) − 𝑆(𝐴|𝐹𝐴𝐵) > 𝑛𝜁 for this range of score margins in the 2x5 case, and a reversal cannot

occur.

 While the overall likelihood of reversal is relatively low for small sample cases of rank sum

scoring (e.g., relative to a standard 𝛼

generates the closest margin of victory in each case (i.e., 1 rank sum unit for n-odd cases and 2

rank sum units for n-even cases). While the overall likelihood of reversal is consistently below

0.02 for computed cases, reversals are found to be much more prevalent for certain initial

sequences. In the 2𝑥7 case, the maximum initial sequence conditional likelihood of reversal is

approximately 0.22, for example. The results of Figure 3 suggest that it is important to consider

not only the statistical test but also the particular data (sequence) of interest when assessing

prevalence of Simpson reversals. As with the overall likelihood of reversal for computed cases,

we find that the maximum likelihood of reversal at the initial sequence level of the data strictly

increases from the 𝑛 to 𝑛 + 2 case for the range of computed cases.

V. Conclusion

 In this paper we have begun an investigation into the likelihood of Simpson reversals. Here

our sole theoretical result was a sufficiency condition, but in a future paper we plan to provide

both sufficient and necessary conditions in order to provide more accurate bounds on the score

differential between groups 𝐴 and 𝐵 that either guarantee the existence of a reversal or make one

impossible. Such results will then allow us to streamline our computational methods even more

in order to assess larger sized groups.

 The importance of being able to handle large samples is something our preliminary results

here indicate. Though this is a first approach, we have shown that group size has an impact on

the likelihood of reversals: as 𝑛 increases, reversals become more possible in general. The

individual cases of sequences displaying higher likelihoods of reversal themselves also see

higher heights as 𝑛 increases. More generally, of course, empirical data samples usually have

relatively large 𝑛. This paper is a first step toward analyzing such data, and our future papers

will continue to build on it.

References
Allison, V. J., & Goldberg, D. E. (2002). Species-Level versus Community-Level Patterns of Mycorrhizal

Dependence on Phosphorus: An Example of Simpson's Paradox. Functional Ecology, 16(3), 346-

352.

Bargagliotti, A. E. (2009). A i0

Foster, G., & Rahmstorf, S. (2011). Global temperature evolution 1979-2010. Environmental Research

Letters, 6(4), 1-8.

Haunsperger, D. B. (2003). Aggregated statistical rankings are arbitrary. Social Choice and Welfare, 20(2),

261-272.

Haunsperger, D. B., & Saari, D. G. (1996). Paradoxes in nonparametric tests. Canadian Journal of

Statistics, 24(1), 95-104.

Kock, N. (2015). How likely is Simpson's Paradox in path models? International Journal of e-

Collaboration, 11(1), 1-7.

Nagaraja, H., & Sanders, S. (2020). The aggregation paradox for statistical rankings and nonparametric

tests. PLOS ONE, 15(3), e0228627.

Pavlides, M. G., & Perlman, M. D. (2009). How likely is Simpson's paradox? The American Statistician,

63(3), 226-233.

Pineiro, G., Oesterheld, M., Batista, W. B., & Paruelo, J. M. (2006). Opposite changes of whole-soil vs.

pools C:N ratios: a case of Simpson's paradox with implications on nitrogen cycling. Global

Change Biology, 12, 804-809.

Simpson, E. H. (1951). The interpretation of interaction in contingency tables. Journal of the Royal

Statistical Society. Series B (Methodological), 13, 238-241.

Yule, G. U. (1903). Notes on the theory of association of attributes in statistics. Biometrika, 2(2), 121-

134.

Appendix I: Computational Code

import java.io.BufferedWriter;

import java.io.FileWriter;

import java.io.IOException;

import java.util.Arrays;

import java.util.HashMap;

import java.util.Map;

import java.util.Scanner;

import java.util.SortedSet;

import java.util.TreeSet;

import java.util.logging.Level;

import java.util.logging.Logger;

/**

 *

 * @author Justin Ehrlich

 */

public class SimpsonsParadox {

 private static int numGroups = 0;

 private static int numDataPoints = 0;

 int numPossibleInd = 0;

 int numIndWeakOnlyAnomalyTypeI = 0;

 int numIndWeakOnlyAnomalyTypeII = 0;

 int numPossibleCycles = 0;

 int numAnomaly = 0;

 int firstDegreeTransativityViolations = 0;

 int numWeakAnomaly = 0;

 int secondDegreeTransativityViolations = 0;

 int thirdDegreeTransativityViolations = 0;

 long numWinnerChanged = 0;

 long numWinnerChangedPossible = 0;

 long topNumWinnerChanged = 0;

 long topNumWinnerChangedPossible = 0;

 String topInitialSequence = "";

 Map<Long, Long> numIndependenceViolationCategoryOccurences = new HashMap<Long

, Long>();

 Map<Long, Long> numIndependenceViolationCategoryCycles = new HashMap<Long, Lo

ng>();

 Map<Long, Long> numSimponsParadoxViolationHighScore = new HashMap<Long, Long>

();

 Map<Long, Long> numSimponsParadoxViolationPossibleHighScore = new HashMap<Lon

g, Long>();

 public SimpsonsParadox() {

 }

 private void createShuffledEvent(String dataPoints, String originalDataPoints

, int numGroups, int

originalDataP

 numWinnerChangedPossible++;

 if(winner == ' ' || originalWinner == ' '){ //weak

 return;

 }

 if(winner != originalWinner){

 numWinnerChanged++;

 }

 return;

 }

 if(currentBin >= numBins){

 //only allow for the correct number of bins. starts at 0 so should no

t equal numBins

 return;

 }

 for(int subsetSize=0; subsetSize <= originalDataPoints.length()-

dataPointsAdded; subsetSize++){

 String preString = dataPoints.substring(0, dataPointsAdded+currentBin

); //endIndex is exclusive, startIndex is inclusive

 String postString = dataPoints.substring(dataPointsAdded+currentBin);

 createShuffledEvent(preString + originalDataPoints.substring(dataPoin

tsAdded, dataPointsAdded+subsetSize) +

 postString,originalDataPoints,numGroups, numBins, currentBin+1, d

ataPointsAdded+subsetSize, originalWinner);

 }

 }

 //return ' ' if winner is tied

 private char findDependentWinner(String dataPoints, int numTeam){

 char[] groups = new char[numTeam];

 for(int i=0; i<numTeam; i++){

 groups[i] = (char) ('a' + (char)i);

 }

 int[] groupsScores = new int[numTeam];

 int counter = 0;

 for (int i = 0; i < dataPoints.length(); i++) {

 counter++;

 for(int j=0; j<numTeam; j++){

 if(dataPoints.charAt(i) == groups[j]){

groups[j]){

5 4 3 3 0 . 3 5 3
 0 . 0 3 5 3 0 . 5 3 3 0 . 3 5 3 r g
 0 . 0 3 5 3 0 . 5 3 3 0 . 3 5 3 R G
 [(0)] T J
 E T
 Q
 q
 0 . 0 0 0 0 0 9 1 2 0 6 1 2 7 9 2 r e
 W * n
 B T
 / F 1 3 1 0 . 5 6 T f
 1 0 0 3 2 0 . 3 5 3 n 0 . 3 5 3 n 0 . 3 5 3 n 0 . 3 5 3 n 0 . 3 5 3 n 0 . 3 5 3 n 0 . 3 5 3 n 0 . 3 5 3 n 0 . 3 5 3 n 0 . 3 5 3 n 0 . 3 5 3 n 0 . 3 5 3 n 0 t s . c h a r A t (r e
 W * n
 B T
 / F 1 3 1 0 . 5 6 T f
 1 0 0 1 1 4 1 . 1 4 1 6 6 . . 5 6 6 . . 5 6 8 8 5 (

'a'

 int minIndex = 0;

 for (int i = 0; i < numTeam; i++){

 if(groupsScores[i] < min){

 min=groupsScores[i];

 minIndex = i;

 }

 }

 //detect tie

 for(int i = 0; i < numGroups; i++){

 if(i != minIndex){

 if(groupsScores[i] == groupsScores[minIndex]){

 return(' ');

 }

 }

 }

 return(groups[minIndex]);

 }

 private int findDependentWinnerScore(String dataPoints, int numTeam){

 char[] groups = new char[numTeam];

 for(int i=0; i<numTeam; i++){

 groups[i] = (char) ('a' + (char)i);

 }

 int[] groupsScores = new int[numTeam];

 int xScore = 0;

 int yScore = 0;

 int counter = 0;

 for (int i = 0; i < dataPoints.length(); i++) {

 counter++;

 for(int j=0; j<numTeam; j++){

 if(dataPoints.charAt(i) == groups[j]){

 groupsScores[j] = groupsScores[j]+counter;

 }

 }

 }

 int min=groupsScores[0];

 int minIndex = 0;

 for (int i = 0; i < numTeam; i++){

 if(groupsScores[i] < min){

 min=groupsScores[i];

 minIndex = i;

