


 
 
1. Pick any person, say B.  If B is acquainted with all the others, we are done. 

 



4.  Method 1 (elegant and simple!!) 

      We must show that quadrilateral ABCD is cyclic. 

The lines intersect on the x and y-axes as shown,  
and the axes bisect the angles formed.  Represent 
the origin as point T, and the intersections of  
�O and m with the x and y-axes as S and R, respectively. 

 
Let  ! = m" APR = m" RPB and " = m" BQT = m" TQC. 
 
Since " DAR is an exterior angle of #APR, we have m" DAR = ! + m" ARP.  
Also, m" ARP = m" TRQ.  Since #TRQ is a right triangle,  
     m" TRQ = 90 Ð m" RQT  $     m" ARP =  90 Ð ".   Therefore, m" DAR = ! + 90 Ð ".  
 



       The common solution to these two equations (the hypothetical center of the circle) is 
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         Now, rewriting the coordinates of points A, B, C, and D with a common denominator 63, 
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      and using the distance formula to find the lengths of AP, BP, CP, and DP, we obtain: 
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      Since 2222 1761124352020816 +==+ , A, B, C, and D are all the same distance from P.       
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