1. Let , , and A all

 From case 1, we know that $2n:2$ $\cos C = \frac{n! 4}{1}$ \mathbf{I} $=\frac{n!4}{2n+2}$. Using the law of cosines on BMC, $BM^2 = \left(\frac{n}{2}\right)^2 + (n-1)^2 - 2\left(\frac{n}{2}\right)^2 + (n-1)\cos C$ $BM^2 = \frac{n}{2}$ + $(n-1)^2$ 2 $2^{2} = \left(\frac{n}{2}\right)^{2} + (n-1)^{2} - 2\left(\frac{n}{2}\right)^{2} (n-1)\cos C,$ Substituting $\cos C = \frac{n! 4}{2n! 2}$, we obtain $BM^2 = \left(\frac{11}{2}\right) + (n-1)^2 - 2\left(\frac{11}{2}\right)(n-1)\left(\frac{n-4}{2n-2}\right)$ ⎠ $\left(\frac{n-4}{2n-2}\right)$ ⎝ $\sqrt{2}$ $\left(\frac{n}{2}\right)$ $(n-1)\left(\frac{n-1}{2n-1}\right)$ $\left(\frac{n}{2}\right)^{2} + (n-1)^{2} - 2\left(\frac{n}{2}\right)^{2}$ $=\left(\frac{n}{2}\right)^2 + (n-1)^2 - 2\left(\frac{n}{2}\right)(n-1)\left(\frac{n-4}{2n-2}\right)$ $BM^2 = \left(\frac{H}{2}\right) + (n-1)^2$ 2 $2^{2} = \left(\frac{11}{2}\right) + (n-1)^{2} - 2\left(\frac{11}{2}\right)(n-1)\left(\frac{11-4}{2}\right)$ from which 4 $BM^2 = \frac{3n^2 + 4}{4}$ If BM = $\frac{n}{2}$, then $\frac{n}{2}$ = $\frac{3n^2 + 4}{4}$ 2 $\frac{n}{2}$ = $\frac{3n^2 + 4}{4}$, which has no real solutions. If $BM = -1$, then 4 $(n!1)^2 = \frac{3n^2 + 4}{4}$ from which n^2 ! 8n = 0 and = 8 yielding a triangle with sides of length 7, 8, and 9.

Case 3: The median is drawn to the longest side.

If AM = MB = CB, then $\frac{n+1}{2}$ = n – 1 from which = 2. This gives a 2, 3, 4 triangle, which we have already considered.

If $CM = MB = AM$, then triangle ABC is a right triangle and the only right triangle with side lengths that are consecutive integers is the 3, 4, 5 triangle already considered.

The only other possibilities for AMC or AMB to be isosceles is if $CM = \text{or } -1$. Using the law of cosines on ABC,

$$
(n \cdot 1)^2 = n^2 + (n+1)^2
$$
 $\frac{1}{2} \cdot 2n(n+1)\cos A$ from which

(7, 8, 9). The three triangles are shown below.

