
 
 
 
 
 
 
 
1.  Let  x, y, and A all 
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          If BM = n – 1, then 
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           a triangle with sides of length 7, 8, and 9. 
                    
     Case 3: The median is drawn to the longest side. 
 

If AM = MB = CB, then 1
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This gives a 2, 3, 4 triangle, which we have already  
considered. 
 
If CM = MB = AM , then triangle ABC is a right triangle and the  
only right triangle with side lengths that are consecutive integers is the 3, 4, 5  
triangle already considered. 
 
The only other possibilities for ΔAMC or ΔAMB to be isosceles is if CM = n or n–1.   
Using the law of cosines on ΔABC,  
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(7, 8, 9).  The three triangles are shown below. 
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